
Preface

These are lecture notes for a course on quantum learning theory (Physics 172
/ CS 2233: Quantum Learning Theory). We begin our journey by motivating our
studies in two di↵erent ways, one more pragmatic and one more philosophical.

Machine learning, and in particular its recent manifestation in deep learning in
the last two decades, has been transformative for computer science and information
technology. The promise, perils, and possibility of generative artificial intelligence
have seeped from Silicon Valley to the public discourse, and the ultimate contours
of its potential are the subject of intense speculation. Granted all of the recent de-
velopments in contemporary machine learning, many of the core ideas derive from
statistical learning theory, which had its heyday in the 1990’s and early 2000’s.
This is a rigorous mathematical subject which conceives of learning in a proba-
bilistic and often Bayesian manner, drawing on probability theory and empirical
process theory, while utilizing information-theoretic concepts from Shannon’s foun-
dational work. Since contemporary machine learning is mostly an empirical subject
pertaining to extraordinarily sophisticated statistical models which defy compre-
hensive characterization, the particularities of the theorems developed in statistical
learning theory are not often used; however, the intuitions these rigorous results
provide are essential for designing new neural network architectures, loss functions,
training algorithms, and datasets. As such, the afterlife of statistical learning the-
ory is that its quantitative knowledge in mathematically simple settings has been
lifted to qualitative but indispensable wisdom about highly complex systems.

Then one motivation for our studies is to develop a quantum version of sta-
tistical learning theory (or more succinctly, quantum learning theory), suitable for
future application by quantum computers. Our studies will focus on quantum
learning for quantum data as opposed to classical data, for reasons that will be ex-
plained. (Indeed, the latter setting is very interesting but has a somewhat di↵erent
character.) The subject will necessarily be mathematically rigorous to cement our
understanding of quantum data and quantum learning algorithms, as well as to de-
velop robust methods with provable performance guarantees suitable for scientific
applications. We emphasize that at this moment in time, quantum learning theory
is not chiefly an empirical subject such as contemporary machine learning; this
underscores the necessity of mathematical rigor and the importance of the founda-
tional development of basic quantum learning algorithms and methods that future
theoretical or empirical inquiries may build on. We will focus on developments in
quantum learning theory mostly from 2019 onward, which saw the development of
fruitful foundations and applications of the subject.

There is also a second, more philosophical motivation for our study of quantum
learning theory. Epistemology is the philosophical study of what we can know about
the world, and how we come to know it. One of the earlier treatments of the subject
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goes back over 2000 years to Plato, although among scientists Descartes’ maxim
“I think therefore I am” (cogito ergo sum) may be more familiar. Specifically,
Descartes was concerned with what he could know with certainty about the world,
and upon wrestling with various uncertainties he concludes that he knows at the
very least that he himself exists, since for him to even render the thought requires
his own existence.

A persistent thread in epistemology since the beginning is that there may be
aspects of our reality that we can never come to know. A particularly incisive
analysis along these lines was developed by Immanuel Kant in the late 18th century,
in which he detailed how the physicality of our corporeal beings and the constitution
of our minds place a priori fundamental limitations on what we can know about
the world, leaving certain truths necessarily out of our reach. While this premise
is widely accepted by philosophers, it is often frowned upon by scientists; after all,
we are children of the Enlightenment for which scientific knowledge is infinitely
extensible and far-reaching. If you feel such an urge to frown on epistemology,
consider this more modern example: we live in a universe which is expanding and
accelerating. Eventually, the expansion will be so fast that light from the early
universe will become so redshifted as to be undetectable. As such, if there is life
that develops somewhere in the universe at such a time, they will never be able to
empirically determine that there was a Big Bang. Thus a truth about the universe
is, to them, out of reach.

In the early 20th century, David Hilbert famously declared that the mathe-
matical world was fundamentally knowable, and that every precise mathematical
statement was either true or false. This epistemic totalism was shockingly un-
dermined by Kurt Gödel in 1931, when he showed that there must always exist
mathematical statements which can neither be proved true nor false. This death
blow to Hilbert’s (and Bertrand Russell’s) conception of mathematical knowledge
was concretized by Alan Turing in his foundational work on computer science, the
pragmatic heir to mathematical logic. Turing famously showed in 1936 that there is
no algorithm (which is guaranteed to terminate in finite time) that can conclusively
decide if any given algorithm will halt or not. Thus Turing’s theory of undecidabil-
ity cleaves out facts about the world which are fundamentally unknowable to us,
furnishing totally precise examples of epistemic roadblocks.

Decades later starting in the early 1970’s, the subject of computational com-
plexity began to emerge. Instead of being concerned with whether the solution to
a computational problem was knowable or unknowable, the subject focused on the
di�culty of computational problems. For example, one can show that sorting a
list of n items (on a classical computer) requires at most ⇠ n log n computational
steps, but also at least ⇠ n log n computational steps, thus pinpointing the absolute
di�culty of the problem. Some computational problems have polynomial di�culty
whereas others have exponential di�culty, and are stratified according to computa-
tional complexity classes. In this way, computational complexity theory comprises
a quantitative form of epistemology, circumscribing how di�cult it is to obtain
computational knowledge.

Having set the scene, we turn to a deep question: how do we come to learn
about the world through scientific inquiry? A key facet is that we interrogate the
natural world through experiment, and algorithmically process our collected data to
reveal hitherto unknown properties of nature. More formally, we can conceptualize
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a system in nature – such as a superconductor, a vat of chemicals, a biological
organism, etc. – as a source of data which is not fully characterized (or else we
would not need to run the experiment); then our experiment comprises a series of
interactions with the world to sample data, subsequent computational processing
of the data, and possibly additional interactions with the world predicated on the
processing of previous data. The ultimate outcome is that we learn a property of
the world, such as the charge of the electron, the symmetry of a crystal, etc. In
this manner, we see that scientific experiments can be beautifully and precisely
abstracted into the framework of learning theory. Therefore, a quantitative study
of learning theory can reveal what we can fundamentally come to know about the
world, and how di�cult it is to do so.

Since the laws of nature are quantum-mechanical, any theory of learning the
natural world must take quantum mechanics into account. In particular, the nat-
ural systems we seek to understand may be quantum-mechanical; the data we
extract can be quantum-mechanical; and our means of processing that data can
be quantum-mechanical. Thus we necessitate a quantum theory of learning. Such
a theory reveals that there are facets of the natural world which are inaccessible
to us unless we can harness quantum computers to couple to natural systems and
perform quantum information processing. More bluntly, quantum learning gives
us access to properties of the natural world which are otherwise unknowable by
classical means. And yet the same theory shows us which properties of the natural
world are forever out of reach, even with the aid of vast quantum computational
power.

Quantum learning theory circumscribes what is knowable and unknowable
about the natural world, providing a quantitative epistemology of the grasp of
scientific inquiry. With so much at stake, let us begin.





CHAPTER 1

A Sneak Peek: Learning a Rotation Matrix

Before we dive into the formalism of quantum learning, let us begin with a
simple motivating example. You will not need to know any quantum mechanics
to understand the setup, but it mirrors, in a stripped–down way, how many real
experiments try to learn an unknown quantum process that one can interact with
in the lab.

1. Basic Setup

Suppose there is an unknown two-dimensional rotation matrix

U = R(✓) ,
✓

cos(✓) � sin(✓)
sin(✓) cos(✓) ,

◆

and for simplicity assume that 0  ✓ < ⇡/2. Your goal is to figure out what ✓ is,
to within small error.

You can “perform an experiment” on it via the following model. Starting

from the first standard basis vector v =


1
0

�
, you can decide in advance upon any

collection of “controls” specified by rotation matrices O0 = R(✓0), . . . , Om = R(✓m),
and apply (i.e., left-multiply by) the transformation

OmUOm�1UOm�2 · · · UO0 .

This results in some new unit vector w =


x
y

�
.

Our figure of merit will be statistical e�ciency, namely we want to learn ✓
to within some acceptable level of error using as few experiments and “queries” to
U (e.g., the above experiment makes m queries to U) as possible.

If we could see the entries of w, then it’s not hard to learn U . In fact we don’t
even need the full flexibility of picking O1, . . . , Om: we can simply take m = 0 and
use no controls whatsoever, so that the above transformation is given by U itself
and w = Uv. In this case, if w = (x, y), we can simply read o↵ the angle of rotation
defining U from ✓ = arccos(x).

There is a crucial catch however: in physical experiments, we never get to
see the literal vector w resulting from an experiment. Without getting into the
quantum details yet, the reason is that w is a superposition between two di↵erent
states, namely the first standard basis vector and the second standard basis vector.
What we can do is measure w, at which point we observe one state or the other,
but in a probabilistic fashion.
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Definition 1 (Born rule – baby version). Given unit vector w = (x, y), if we

measure it, we get as output either


1
0

�
with probability x2, or


0
1

�
with probability

y2. Note that as w is a unit vector, this is a valid probability distribution.

One might thus envision a natural workaround to not having access to the exact
entries (x, y) of w. Measuring e↵ectively gives us access to biased coin flips: with
probability x2 we see heads and with probability y2 we see tails. By repeatedly
performing the experiment that results in w and measuring w each time, we can
estimate x2 and y2 simply by computing the fraction of heads and tails we observe.
How many repetitions do we need?

This can be computed with the Cherno↵ bound:

Fact 2 (Cherno↵ bound). Let X1, . . . , XN be independent Bernoulli random vari-
ables with expectation p. Then for any t > 0,

Pr
h���

1

N

X

i

Xi � p
��� > t

i
 2 exp

⇣
� Nt2

2p(1 � p)

⌘

In our setting, p = x2, and X̂ = 1
N

P
i Xi, so if we apply the above with

t = ✏x
p

1 � x2 and N = 2 log(2/�)/✏2, the right-hand side of the above bound is �
and we conclude that with

O(log(2/�)/✏2) (1)

coin tosses, we can produce an estimate 0  X̂  1 such that |x2 � X̂|  ✏x
p

1 � x2

with probability at least 1 � �. We can then output arccos(
p

X̂) and argue that
this is O(✏)-close to ✓ with some elementary calculus (the reader can safely skip
this on a first reading without losing any of the core intuition):

Proposition 3. Let 0  ✏  1/2. Suppose 0  X, X 0  1 satisfy |X � X 0| 
✏
p

X(1 � X). Then

| arccos(
p

X) � arccos(
p

X 0)|  ✏ .

Proof. As arccos(
p

X) and
p

X(1 � X) are symmetric about X = 1/2, we may
assume without loss of generality that |X|  1/2.

If |X| � ✏2

✏2+4 , then X/2  X 0  X + ✏/2. If we define f(z) , arccos(
p

z),

then f 0(z) = � 1

2
p

z(1�z)
, so |f 0(z)|  2|f 0(X)| for all z between X and X 0. By

integrating, we conclude that

| arccos(
p

X) � arccos(
p

X 0)|  1p
X(1 � X)

· ✏
p

X(1 � X)  ✏

as desired.
If |X| < ✏2

✏2+4  ✏2

4 , then arccos(
p

X) � ⇡/2�✏. If X 0  X, then arccos(
p

X) 
arccos(

p
X

0
)  ⇡/2, so | arccos(

p
X) � arccos(

p
X 0)|  ✏. If X 0 � X, then

|f 0(z)|  2|f 0(X)| for all z between X 0 and X, so the claimed bound follows again
by integrating. ⇤
The 1/✏2 scaling in Eq. (1) for the number of coin tosses is called the standard
quantum limit – often it is formulated in the reverse direction, namely using N
experiments (sometimes called “shots”), one can estimate the unknown parameter
✓ to error ⇠ 1/

p
N .
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2. Beating the Standard Quantum Limit

Of course, we are not yet done. While it is an unavoidable fact of life that in the
classical world, estimating the bias of a coin to error ✏ requires ⇠ 1/✏2 coin tosses
in general, in the quantum world we are not limited to simply reducing learning
rotations to learning the bias of a random coin. Indeed, the approach described
above is exceedingly naive: we set m = 0 and didn’t use any controls Oi whatsoever.

It turns out that by being clever about the choice of experiments, we can do
much better, in fact with only O(log 1/✏) experiments and O(1/✏) queries to U in
total across all experiments. The O(1/✏) scaling is called the Heisenberg limit:
this turns out to be a fundamental barrier that no experimental protocol, no matter
how clever, can beat.

The key idea is to “bootstrap.” Instead of estimating ✓ to high precision right
o↵ the bat, we are going to gradually refine our estimate. As a thought experi-
ment, imagine we start by getting a relatively crude approximation to ✓ by running
the protocol in the previous section for target precision which is just a small con-
stant, say, ✏crude = 1/4. We can accomplish this with probability 1 � � using only
O(log(1/�)) experiments and queries to U , with no dependence yet on the final
target precision ✏.

Given this estimate, if we further subtract ✏crude from it, we get an angle ✓(1)

which is an underestimate of ✓ by a margin of at most 2✏crude  1/2. To estimate
✓, it now su�ces to estimate the residual angle ✓ � ✓(1). So in all subsequent
experiments, instead of querying U = R(✓), we can query

U (1) , UR(✓(1))† = R(✓ � ✓(1)) .

Here is our main claim:

Lemma 4. Suppose ✓ � 2�k  ✓(k)  ✓ and let U (k) , R(✓ � ✓(k)). Let �k > 0.
Consider the following protocol:

• Repeat the following experiment C log 1/�k times:
– Apply U (k) a total of 2k times starting from the first standard basis

vector v.
– Measure the resulting vector and record the observation (heads or

tails)
• Let X̂ denote the fraction of heads seen across these experiments.
• Define

✓(k+1) = ✓(k) + arccos(
p

X̂)/2k � 1/2k+2 .

For C a su�ciently large absolute constant, we have ✓ � 1/2k+1  ✓(k+1)  ✓ with
probability at least 1 � �k.

Proof sketch. Note that the rotation given by applying U (k) a total of 2k times
is R(2k(✓ � ✓(k))). By taking C su�ciently large, the argument in the previous

section implies that | arccos(
p

X̂) � 2k(✓ � ✓(k))|  1/4. Dividing by 2k on both
sides, we conclude that with probability at least 1 � �k,

✓ � 1/2k+2  ✓(k) + arccos(
p

X̂)/2k  ✓ + 1/2k+2 .

Subtracting 1/2k+2 from all sides and recalling the definition of ✓(k+1) above, we
conclude that ✓(k+1) is an underestimate of ✓ by at most 1/2k+1 as claimed. ⇤
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Continuing in this fashion up to k = k , dlog2 1/✏e, we obtain an angle ✓(k)

which underestimates ✓ by at most ✏, with probability at least 1 �
P

k �k. Suppose

in each round k, we take �k , �2k�k�1, so that
P

k �k  �.
Furthermore, in any round k, we perform

2k · C log 1/�k = 2k · C log 1/� + O(2k · C(k + 1 � k))

queries to U (k) which amounts to as many queries to U . So the total number of
queries made to U is

(1 + 2 + · · · + 2k)C log 1/� +
kX

k=0

O(2k(k + 1 � k)) = O(log(1/�)/✏)

as desired.

3. Looking Ahead

3.1. Rotation Learning in the Wild

The rotation learning problem can be thought of as a toy stand–in for a physical
process that imprints a phase ✓ on a two–level system (a qubit, a pair of optical
modes, or a two–dimensional invariant subspace inside a larger device).

In precision sensing (gravitational–wave interferometers, atomic clocks, Ramsey
spectroscopy, and phase estimation in general), the central task is to learn a small ✓
as e�ciently as possible. Real instruments like LIGO [AAA+13] do not literally
implement the protocol we analyze here; for example, they inject squeezed light to
reduce measurement noise rather than concatenating many coherent applications
of the same unknown operation. Squeezing is notably more robust to realistic
optical losses than schemes that try to amplify phase information solely by repeated
coherent evolution or fragile entangled probes. Still, at the level of information flow,
many metrology strategies can be idealized as:

(prepare a known state)
apply U✓, possibly with controls���������������������! (measure and update).

Our rotation–learning toy model captures precisely this prepare–evolve–measure
loop. It allowed us to isolate two ingredients that matter for sample complexity: (i)
how coherently we can accumulate phase information (e.g. by applying U multiple
times or by clever controls), and (ii) how we post-process this information phase
into a reliable estimate of the unknown quantum object. The formalism developed
in this book will vastly generalize this example and its strategy.

3.2. Extensions

Although we illustrated the bootstrap idea with a 2 ⇥ 2 rotation, in fact the
same idea can be extended to learn any 2⇥2 unitary matrix in O(1/✏) total queries.

In fact, one can even extend this beyond 2 dimensions. What is needed is
an appropriate generalization of the step where we estimated the bias of a coin
toss to constant error ✏crude. The relevant ideas for doing this will be introduced
later on in this lecture when we discuss tomography. When we move from 2
dimensions to d dimensions however, the crucial change is that the number of queries
will now depend on d. The intuition is that a completely unknown unitary on a
d–dimensional space has d2 real parameters, so without additional assumptions,
one should not expect to learn all of these parameters until the number of queries
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scales with O(d2). Indeed, it was shown recently [HKOT23] that the optimal
query complexity for learning an arbitrary unitary matrix in d dimensions in the
above model is exactly d2/✏, up to constant factors. The argument we presented
above is really just a baby version of the argument in that work.

Unfortunately, in the settings we will be interested in, we will always think
of d as scaling exponentially in the number of “particles” in the system. To avoid
exponential scaling, we then need to posit additional structure and align the learning
task with that structure. For example, one standard and “physically reasonable”
choice of structure to assume is that the unknown unitary takes the form of U =
e�iH , where H is a local Hamiltonian on n qubits; we will define this in due time,
but for now the intuition to keep in mind is that this Hamiltonian is described by
a total number of free parameters that only scales polynomially in the number
of particles. Under such structural assumptions, one can then hope to develop
algorithms that scale much more e�ciently – we will cover these in a later unit in
this course.

As another preview for what is to come, note that one can consider other
models of interaction. In the query model we considered in this lecture, we allowed
arbitrary control, and our choice of experiments was adaptive over the di↵erent
rounds of the learning protocol. One could further enhance this model by, for
instance, performing m entangled experiments in parallel, expanding the relevant
dimension from d to dm. While this doesn’t end up buying much for the unitary
learning problem, in many other quantum learning settings this can make a big
di↵erence in the e�ciency with which one can learn. In the other direction, one can
also consider weaker models where, perhaps due to various practical constraints on
the experimental apparatus like hardware limitations or noise, we cannot perform
arbitrary control. The e↵ect of such constraints on the ultimate e�ciency with
which we can learn quantum states is another central theme in these notes.

Stepping further back, the rotation–learning example isolates three ingredients
that will organize the rest of the book: the unknown object (a state, unitary, chan-
nel, or Hamiltonian), the access model (how we may prepare inputs, interleave
known controls, parallelize or reuse the device, and measure), and the loss metric
(in this case, the “parameter error” with which we estimate ✓). Throughout the
course of these lectures, we will use these basic ingredients to develop the founda-
tions of a general theory of quantum learning.


