
2. QUANTUM THRESHOLD SEARCH 115

2. Quantum Threshold Search

To use the online learning protocol from the previous section, we need a way
to implement the “teacher.” Ideally, we want a teacher that can:

• Correctly identify when the student has correctly learned all of the observable
values

• If the student has not correctly learned all observable values, pinpoint some
observable on which the student is incorrect and show it to them in the next
round of interaction.

This is formalized in the following:

Definition 114 (Quantum Threshold Search). The quantum threshold search prob-
lem is the following task:

• Input: access to copies of an unknown quantum state ⇢; a description of observ-
ables O1, . . . , Om; and numbers ô1, . . . , ôm

• Output: Either “|ôi � tr(Oi⇢)|  ✏ for all i 2 [m],” or an index i 2 [m] for which
|ôi � tr(Oi⇢)| > 3

4✏ together with whether or not ôi � tr(Oi⇢).

We would like an algorithm that outputs an incorrect statement with probability at
most �

In this section, we give an algorithm for this task with the following guarantee:

Theorem 115. There is an algorithm for quantum threshold search which uses

O( log
2 m+log 1/�

✏2 · log 1/�) copies of ⇢ and outputs an incorrect statement with prob-
ability at most �.

2.1. Basic reductions

Here we perform a sequence of simplifications to the threshold search problem
that show that it su�ces to solve the following version of the problem:

Definition 116 (Weak Threshold Search). The weak quantum threshold search
problem is the following task:

• Input: access to copies of an unknown quantum state ⇢; and a description of
projectors O1, . . . , Om such that tr(Oi⇢) > 3/4 for at least one i 2 [m]

• Output: Any index j 2 [m] for which tr(Oj⇢) > 1/4.

We would like an algorithm that succeeds with any ⌦(1) probability.

Note the four key di↵erences: (1) the observables are projectors, (2) instead of
testing whether some observable value is far from some threshold ôi, we are testing
whether it is larger than some threshold, (3) in place of ✏

4 and 3✏
4 , the thresholds in

question are fixed constants 3/4 and 1/4, (4) we are operating under the promise
that there is some observable value which is above the threshold 3/4, and (5) we
are only aiming for constant success probability.

The reductions we perform to get to this new task are relatively straightforward,
and the reader may skip the proof upon first reading without losing much intuition.

Projector observables. The fact that we can assume WLOG that the observ-
ables are projectors follows immediately from the Naimark dilation theorem (The-
orem 43). In fact, we could have assume this at the outset of our discussion on
shadow tomography, but it wouldn’t have noticeably simplified anything up to this
point.
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One-sided testing. The fact that we can move from testing whether tr(Oi⇢) is
close to some value (“two-sided testing”) versus testing whether it is above some
value (“one-sided testing”) arises from the fact that if we check that tr(Oi⇢) is
above some threshold ôi � O(✏), and additionally that tr((Id � Oi)⇢) is above some
threshold 1� ôi �O(✏), then this is equivalent to checking that |tr(Oi⇢)� ôi|  O(✏)
as in the original formulation of threshold search.

Specific constant thresholds.
With the above reasoning, we can reduce to distinguishing between whether all

tr(Oi⇢) are below the threshold ôi + 3
4✏, or whether there is some tr(Oi⇢) which is

above the threshold ôi � ✏. That it su�ces to do this when these thresholds are
replaced by 3/4 and 1/4 respectively is immediate from the following “boosting”
result:

Lemma 117. For any ✏ > 0 and �, ✓ 2 (0, 1), there is an n = O(1/✏2) such that
for any projector ⇧ acting on Cd, there is a projector ⇧⇤ acting on (Cd)⌦n such
that the following holds for any state ⇢: if tr(⇧⇢) > ✓ + 3

4✏ then tr(⇧⇤⇢⌦n) > 3/4,
and if tr(⇧⇢) < ✓ � ✏ then tr(⇧⇤⇢⌦n) < 1/4.

Proof. For convenience let ⇧1 = ⇧ and ⇧0 = Id � ⇧. Given 0  k  n, define
the dn-dimensional projector ⇧⇤

k , P
x2{0,1}n:|x|=k

Nn
i=1 ⇧xi , where |x| denotes the

Hamming weight of x. Finally define ⇧⇤ , P
k:k/n>✓ ⇧⇤

k.

By Cherno↵ bound, if tr(⇧⇢) > ✓+✏, then tr(⇧⇤⇢⌦n) � Pr Bin(n, ✓ + 3
4✏) > ✓ �

1 � exp(�⌦(n✏2)), so if n = ⌦(1/✏2) with su�ciently large leading constant, the
latter probability is at least 3/4. Likewise, if tr(⇧⇢) < ✓ � ✏, then tr(⇧⇤⇢⌦n) 
Pr Bin(n, ✓ � ✏) > ✓  exp(�⌦(n✏2)), which is bounded by 1/4 if n = ⌦(1/✏2). ⇤
Note that the reduction in Lemma 117 blows up the dimension to dn, but from the
perspective of sample complexity this is fine as the sample complexity claimed in
Theorem 115 is independent of dimension.

Promise version and constant success probability. Finally, we justify why
we can assume without loss of generality that there exists i 2 [m] for which
tr(Oi⇢) > 3/4 in the formulation of weak threshold search, and why constant
success probability su�ces. Given an algorithm A that successfully solves weak
threshold search with constant probability under this “promise,” in the absence
of this promise we can simply run the algorithm A O(log 1/�) times pretending
the promise holds to get some indices j1, . . . , jO(log 1/�) 2 [m]; validate whether
tr(Oj⇢) > 1/4 for any of these indices j by directly measuring the observable Oj on
Õ(log 1/�) copies, where � > 0 is the target failure probability; and return “Suc-
cess” if not. If the promise held, then the guarantee of A would apply and we would
be done. If the promise did not hold and yet we validated that tr(Oj⇢) > 1/4 for
some j, we would still be done. Finally, if the promise did not hold and yet we
returned “Success,” we would also be done as tr(Oi⇢) < 3/4 for all i by definition.

It finally remains to give an algorithm for weak threshold search (Definition 116).
There are a couple known ways of doing this, and in these notes we opt for a re-
cently proposed approach via so-called blended measurements, as this builds upon
ideas from the first problem set [WB24]. The main objective will be to prove the
following guarantee:

Theorem 118. There is an algorithm for weak threshold search which uses O(log2(m))
copies of ⇢ and succeeds with probability ⌦(1).
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2.2. Gentle and Blended Measurements

We will use a basic fact about how measurements can damage a state (this was
already shown in the first problem set in the special case of pure states):

Lemma 119 (Gentle measurement lemma). If {M, I � M} is a two-outcome mea-
surement, and ⇢0 is the post-measurement state upon observing the outcome I � M
after measuring ⇢, then k⇢� ⇢0ktr  2

p
tr(M⇢).

Intuitively, this says that if the probability of acceptance for two-outcome mea-
surement is small, then the post-measurement state is not too far from the original
state.

Proof. It su�ces to lower bound the fidelity by tr((I � M)⇢). This is in turn
bounded by the fidelity between the purifications of ⇢, ⇢0, noting that if | i denotes
the purification of ⇢, then the purification of ⇢0 is given by

| 0i :=

p
I � M ⌦ I | ip

h | (I � M) ⌦ I | i
Letting ⇤ := (I � M) ⌦ I, we see that the fidelity is given by

h |
✓p

⇤ | i h |
p

⇤

h | ⇤ | i

◆
| i =

|h |
p

⇤ | i|2
h | ⇤ | i � h | ⇤ | i ,

where in the last step we used that
p

⇤ ⌫ ⇤ because ⇤ � I. The proof is complete
upon noting that h | ⇤ | i = tr((I � M)⇢). ⇤

Remark 120. The square root in the gentle measurements lemma is the key source
of the anti-Zeno e↵ect also explored in the first problem set: we could imagine
repeatedly applying that lemma for measurements Mi such that the most recent
post-measurement state ⇢i�1 satisfies that tr(Mi⇢i�1) is small for all i, yet the total
“damage” to the system as measured by the distance between the final state and the
original state could be large. The gentle sequential measurements lemma doesn’t
fix this: even though the sum over acceptance probabilities is under the square root,
note that those are the acceptance probabilities with respect to the original state ⇢!

Definition 121 (Blended measurements). Given a set of two-outcome projective
measurements M1, . . . , Mm, define the blended measurement to be the (m + 1)-
outcome POVM with given by {E2

0 , . . . , E2
m}, where

Ei =
p

Mi/m for i = 1, . . . , m

and

E0 =

s
I � 1

m

X

i

Mi .

We refer to the measurement outcome corresponding to E0 as the “reject” outcome.
Define the state

⇢(k)BM :=
Ek

0⇢E
k
0

tr(Ek
0⇢E

k
0 )

,

i.e., the result of applying the blended measurement k times and getting all rejects.
Define the acceptance probability

AccBM(k) := 1 � tr(Ek
0⇢E

k
0 ) ,
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i.e., the probability that at least one measurement in the first k blended measure-
ments accepts.

The gentle measurement lemma immediately implies that

k⇢� ⇢(k)BMktr  2
p

AccBM(k) . (31)

2.3. Threshold Search with Blended Measurements

We now give our algorithm for weak threshold search. We begin by providing
some intuition. Note that in the classical setting, what allows us to easily achieve
sample complexity O(log(m)/✏2) is our ability to reuse samples, whereas in the
quantum setting, measurement is inherently destructive and seems to preclude such
reuse. Our saving grace is the gentle measurement lemma (Lemma 119), which
intuitively says that measurements with very lopsided outcome probabilities are
not very destructive and allow some level of data reuse.

To motivate how to leverage this, consider the following strategy: select a
random observable Oi from the list and measure with the two-outcome POVM
{Oi, I � Oi} (note that this is equivalent to performing the blended measurement),
and post-select on the Oi outcome. Conditioned on this, by Bayes’ rule the posterior
probability over getting a particular i 2 [m] is tr(Oi⇢)P

j tr(Oj⇢) , which is higher for Oi

such that tr(Oi⇢) is large. Of course, this doesn’t quite work as simulating post-
selection may require many samples if tr(Oi⇢) is small, and if we’re unlucky this
might be the case for all but a few, or even just one, of the Oi’s. In that case, we
might require ⌦(m) samples just to simulate one draw from the posterior, which
defeats the entire purpose of this approach.

Here is how data reuse can help: suppose after measuring the randomly cho-
sen two-outcome POVM {Oi, I � Oi}, if we don’t observe outcome Oi, we simply
rerun the above experiment on the exact same copy. The hope is that if we don’t
observe outcome Oi, the state hasn’t been damaged too much, and we can keep
repeating this experiment until we get something that somewhat resembles the
aforementioned posterior distribution.

This motivates the protocol in Algorithm 6 below.

Algorithm 6: BlendedThresholdSearch(�, {Mi})

Input: Single copy of �; observables 0 � M1, . . . , Mm � I
Output: Index i 2 [m] or “Reject”

1 Repeatedly apply the blended measurement to � for m times.
2 If at any point the measurement accepts, return the corresponding

observable index i 2 [m]
3 Otherwise, return “Reject”

Note that in Algorithm 6, we are using observables M1, . . . , Mm of � instead of
observables O1, . . . , Om of ⇢. Eventually we will take � to be ⇢⌦s for s = O(log2 m),
and we will also specify how to construct M1, . . . , Mm below.

Note that by definition, AccBM(m) is the probability BlendedThreshold-

Search outputs “Accept.” Also define the quantities

� :=

P
i tr(Mi�)2P
i tr(Mi�)
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�⇤ :=
mX

i=1

m�1X

j=0

(1 � AccBM(j)) · tr(Mi�
(j)
BM)

m
· tr(Mi�) .

The interpretation is as follows:

• � is the expected value of tr(Mi�) under the posterior distribution from
the above discussion, namely given by selecting a random Mi, measuring
� with {Mi, I �Mi}, and conditioning on the Mi outcome. This is the ex-
periment that BlendedThresholdSearch is trying to simulate, albeit
only approximately as the state gets somewhat damaged by each reuse.

• �⇤ is the expected value of the observable value tr(Mi�) where Mi is the
measurement returned by BlendedThresholdSearch, where we define
the observable value to be zero if the procedure does not output ACCEPT
by the end.

We start by establishing a basic lower bound on the probability of returning
some observable using BlendedThresholdSearch; this also motivates repeating
the blended measurement up to m times.

Lemma 122. AccBM(m) � 1
4 maxi tr(Mi�)2 � �2/4.

Proof. Permute the Mi’s so that WLOG, tr(M1�)2 = maxi tr(Mi�)2. Then
AccBM(m) is at least the sum over all m rounds of the probability that all measure-
ments up to that round have rejected, and in that round we observe M1, i.e.

AccBM(m) �
m�1X

i=0

(1 � AccBM(i)) · 1

m
tr(M1�

(i)
BM)

� 1

m

m�1X

i=0

(1 � AccBM(i)) ·
⇣
tr(M1�) �

p
AccBM(i)

⌘

� (1 � AccBM(m)) · (tr(M1�) �
p

AccBM(m)) .

We used the gentle measurement lemma (Eq. (31)) and the operational definition
of trace distance in the second step. Rearranging the above inequality, the claim
follows. ⇤

Using the above Lemma, we can now relate � to �⇤, showing that if tr(Mi⇢) has
large expectation under the posterior distribution, then it has large expectation
under BlendedThresholdSearch:

Lemma 123. �⇤ � ⌦(�3).

Proof. By the gentle measurement lemma,

�⇤ �
mX

i=1

m�1X

j=0

(1 � AccBM(j)) · tr(Mi�)

m
·
⇣
tr(Mi�) �

p
AccBM(j)

⌘

=
m�1X

j=0

(1 � AccBM(j))
mX

i=1

tr(Mi�)

m

⇣
� �

p
AccBM(j)

⌘

=
m�1X

j=0

(1 � AccBM(j))AccBM(1)
⇣
� �

p
AccBM(j)

⌘
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Recall from Lemma 122 that AccBM(m) � �2/4, and by monotonicity of
AccBM(k) in k, there is some m⇤  m such that AccBM(k) � �2/4 for all k � m⇤

and AccBM(k) < �2

4 for all k < m⇤. We can thus lower bound the above by

�⇤ � m⇤

✓
1 � �2

4

◆
�

2
· AccBM(1) �

✓
1 � �2

4

◆
�

2
· AccBM(m⇤) & �3 ,

where in the penultimate step we again used monotonicity, specifically the fact that
for every i, the probability that i is the first step where the blended measurement
accepts is upper bounded by the probability that the blended measurement accepts
in the first step. ⇤

The reason we care about �⇤ is that if it is large, then we expect Blend-

edThresholdSearch to output something with large observable value. If there
were a large “gap” among the observable values, e.g. all the observables that we
regard as “small” are much smaller in value (e.g.  ⌧) than the ones we regard as
“large”, then using the fact that

�⇤  ⌧ · pb + pg ,

where pb is the probability the protocol outputs a small observable and pg is the
probability it outputs a large observable, then we would conclude that the protocol
succeeds with probability pg � �⇤ � ⌧ · pb � �⇤ � ⌧ .

This now leads us to describe our explicit construction for the Mi’s in terms
of the original observables Oi. We will engineer such a gap by simply choos-
ing a threshold and “boosting” Oi around this threshold using the same idea as
Lemma 117. That is, for any threshold ✓ 2 [0, 1] and n 2 N, we can use the proof
of Lemma 117 to design an n-copy observable Mi for every single-copy observable
Oi such that for � , ⇢⌦n,

tr(Mi�) = Pr[Bin(n, tr(Oi⇢)) � ✓n] .

So if we boost around a threshold ✓ 2 (1/4, 3/4), then for i such that tr(Oi⇢)  1/4,
we have tr(Mi�)  exp(�⌦(n)), so we can take ⌧ above to be this. In other words,
it is not hard to engineer the “gap” needed in the argument outlined above.

Instead, the tricky part is to ensure that we can take a threshold ✓ such that
�⇤ is su�ciently large. By the above Lemma, it su�ces to show there exists a
threshold ✓ such that the simpler quantity � is su�ciently large. We carry this out
in the next subsection.

2.4. Finding a Good Threshold

Given thresholds 0  a  b  1, let M [a, b] denote the set of indices i for which
tr(Oi⇢) 2 [a, b]. Also let n[a, b] := |M [a, b]|.

We first show a su�cient condition for a threshold ✓ to yield large � for the
“boosted” observables.

Lemma 124. For any threshold ✓, the corresponding � for the “boosted” n-copy
observables satisfies

1

4�
� 1  1

n[✓, 1]

X

i2M [0,✓]

exp(�n(✓ � tr(Oi⇢))
2) . (32)
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Proof. Let M⇤

i denote the “boosted” n-copy observables associated to this choice
of ✓. Then by definition of �, we have

X

i2M [✓,1]

tr(M⇤

i ⇢
⌦n)2  �

⇣ X

i2M [0,✓]

tr(M⇤

i ⇢
⌦n) +

X

i2M [✓,1]

tr(M⇤

i ⇢
⌦n)

⌘

Note that for any i 2 M [✓, 1], the quantity tr(M⇤

i ⇢
⌦n) is given by Pr[Bin(n, ✓0) �

✓] for some ✓0 � ✓ and thus lies in [ 12 , 1]. Substituting this into the above and
rearranging, we conclude that

⇣ 1

4�
� 1

⌘
n[✓, 1] 

X

i2M [0,✓]

tr(M⇤

i ⇢
⌦n)


X

i2M [0,✓]

exp(�n(✓ � tr(Oi⇢))
2)

as claimed. ⇤
Henceforth, we will take n , 100 log2 m. The above lemma implies that in order for
the threshold to su�ce for our protocol, we just need to ensure that the right-hand
side of Eq. (32) is upper bounded by some constant, as this would imply � is at
least some constant.

Motivated by this, we say that a threshold is bad if

1

n[✓, 1]

X

i2M [0,✓]

exp(�100 log2 m(✓ � tr(Oi⇢))
2) � 4 .

We will show that a random threshold from (1/4, 3/4) is not bad with at least
constant probability.

Lemma 125. Suppose n[✓, 1] � 1 and that ✓ is bad. Then there is �✓  ✓ such that

n[�✓, ✓] � exp(50 log2 m(✓ � �✓)
2) · n[✓, 1] .

Proof. We will show that if, to the contrary, n[�, ✓] < exp(50 log2 m(✓ � �)2) ·
n[✓, 1] for all �  ✓, then ✓ is bad. Define ⌘(x) = n[✓ � x, ✓] and �(x) ,
exp(�100 log2(m)x2) so that

X

i2n[0,✓]

exp(�100 log2 m(✓ � tr(Oi⇢))
2) =

X

i2n[0,✓]

�(✓ � tr(Oi⇢)) .

Then because �
R
1

z �0(x) dx = �(z), we have

X

i2n[0,✓]

�(✓ � tr(Oi⇢)) = �
Z

1

0
⌘(x)�0(x) dx

<

Z
1

0
200x log2(m) · exp(�50 log2(m)x2) dx

 4  4n[✓, 1] ,

where in the second step we used the assumed bound on n[✓ � x, ✓] = ⌘(x), so we
conclude that ✓ is not bad. ⇤
This lemma implies that for any bad threshold, there are exponentially many ob-
servable values below that threshold. We will use this to argue that the bad thresh-
olds are confined to a small collection of highly concentrated “clumps,” and any
threshold outside of these clumps is good.
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Define ✓0 to be the largest threshold within [1/4, 3/4] which is bad (if no such
threshold exists, we are done). By the above lemma, we know that the interval
[�✓0 , ✓0] contains a lot of observable values. For every i � 0, let ✓i+1 be the largest
threshold within [1/4,�✓i) which is bad, if one exists. By design, any threshold
outside of the intervals [�✓i , ✓i] is good, so we just need to upper bound the sum of
the interval lengths `i , ✓i � �✓i . Let nthres denote the total number of ✓i’s.

The following is immediate from Lemma 125:

Corollary 126. Suppose n[3/4, 1] � 1. Then for every j < nthres,

jX

i=0

n[�✓i , ✓i] � max
⇣
2j , exp

⇣
50 log2(m)

jX

i=0

`2i

⌘⌘
.

In particular, nthres  log m, and
nthres�1X

i=0

`2j  1

50 log m
.

Proof. By Lemma 125, we have

n[�✓j , ✓j ] � n[✓j , 1] � exp(50 log2(m)`2j ) ·
j�1X

i=0

n[�✓i�1 , ✓i�1] ,

so the partial sums
Pj

i=0 n[�✓i , ✓i] are increasing at a rate of at least

1 + exp(50 log2(m)`2j ) � max(2, exp(50 log2(m)`2j )) .

with each additional summand, as claimed. ⇤
We can now complete the proof that the bad thresholds are concentrated in clumps
whose total measure is small. This concludes our proof of Theorem 118, as it
implies that we can boost the observables around a randomly chosen threshold
from [1/4, 3/4].

Lemma 127. Suppose that n[3/4, 1] � 1. Then the set of bad thresholds in [1/4, 3/4]
has measure at most 1/6.

Proof. The lengths `0, . . . , `nthres�1 are a collection of log m nonnegative numbers

whose squares sum to 1
50 log m . By the fact that k~̀k1  k~̀k2 ·

p
D for any D-

dimensional vector ~̀, we conclude that
P

i `i 
p

1/50  1/6 as claimed. ⇤


