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the geometric structure of physical Hamiltonians, and the particular exponential
form of the quantum Gibbs state (35). We proceed with this task below.

3. A strategy for learning Gibbs states at high temperatures

We will present the quantum learning algorithm of [HKT22] for learning quan-
tum Gibbs states at high temperature. For this we set up some notation and then
sketch the proof before delving into details. Suppose we write our many-body
Hamiltonian as

H =
X

a2[M ]

�a Ea ,

where each Ea 2 Cd⇥d is a distinct, non-identity, traceless Hermitian operator with
kEak  1, and we take each Hamiltonian coe�cient to be a real �a 2 [�1, 1]. The
list of coe�cients is � = (�1, ..., �M ). We will sometimes denote the data of the
Hamiltonian by (a, Ea, �), indicating the index set a 2 [M ], the set of operators
Ea, and the list of coe�cients �. The following definition is useful.

Definition 128 (Dual interaction graph, using the notation of [HKT22]). For any
Hamiltonian in the set {(a, Ea, �) : a 2 [M ]} there is an dual interaction graph
G with vertex set [M ] where an edge connects vertices a and b if and only if a 6= b
and

Supp(Ea) \ Supp(Eb) 6= ; .

We let d denote the maximum degree of the graph G.

We will consider the setting in which d is a constant independent of M , e.g. if each
Ea acts on a constant number of qubits and each qubit participates in a constant
number of terms. This covers a large class of physical Hamiltonians. Henceforth
we will take, without loss of generality, each Ea to be a non-identity Pauli string
acting on constant number of qubits.

The basic architecture of the proof of [HKT22] is as follows. We consider
expectation values of each Ea in the thermal state of interest, and perform the
high-temperature (i.e. small �) expansion

hEai� =
tr(e��HEa)

tr(e��H)
=

tr(Ea)

d
+

1X

m=1

�mp(a)m (�1, ..., �M ) (36)

where the term tr(Ea)
d = 0 since each Ea is a non-identity Pauli and thus traceless,

and each p(a)m is a degree m homogeneous polynomial in the Hamiltonian coe�-

cients. Moreover, we can determine the form of any particular p(a)m via an e�cient
classical computation. We first find a constant �c below which the above series
converges, i.e. a temperature above which our expansion makes sense. For this we
find the radius of convergence of the series in the complex �-plane, which involves
constraining the maximum ‘sizes’ of the polynomials pm (recalling that �a’s are at
most magnitude 1) using the locality structure of the Hamiltonian and a so-called
cluster expansion, to be explicated shortly.

Having argued that (36) makes sense above some constant temperature, the
basic strategy is to argue that we can truncate the sum over m at some finite order;
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then we have

hEai� ⇡
mmaxX

m=1

�mp(a)m (�1, ..., �M ) (37)

for each a. (We will of course quantify how the approximation ‘⇡’ depends on
mmax later on.) The left-hand side is measurable, and since the pm’s on the right-
hand side are e�ciently classically computable, we can feasibly try to ‘solve the
polynomial system’ given by (36) for a 2 [M ], and obtain the coe�cients �1, ..., �M .
This last part seems tricky; for instance, there could be many spurious solutions
to the equations which do not give the true Hamiltonian, or possibly many ‘near’-
solutions which are hard to distinguish from true solutions. Remarkably, using
some nice properties of a generating function for correlation functions of the Gibbs
state, we can formulate the solution of the system in (37) as a minimization problem
which is guaranteed to be convex in our high-temperature regime of interest. As
such, we can e�ciently land on the correct �a’s within a small approximation error.

We will segment our description of the proof into four parts accordingly. First
we will explain the high-temperature cluster expansion which allows us to write (36)
for all � < �c = O(1). Then we will show how solving the system given by (37)
for a 2 [M ] can be formulated as a minimization problem which is convex in our
regime of interest. Next we explain a useful and e�cient algorithm for solving said
optimization problem. Finally we put all of the bounds together and formulate the
full algorithm, in its full complexity-theoretic glory.

3.1. High-temperature cluster expansion

As advertised, we begin by justifying the series expansion in (36), and moreover
in particular providing a bound on its radius of convergence �c.

3.1.1. Generating functions for Gibbs states

First we need a useful mathematical object, namely the generating function of
correlation functions of our Gibbs state. We write

F(�, �1, ..., �M ) := � 1

�
log tr exp(��H) = � 1

�
log tr exp

0

@��
X

a2[M ]

�a Ea

1

A ,

which is called the Helmholtz free energy, which we will call by its nickname,
the ‘free energy’. Note that using our notation from before Z(�) = tr(e��H), the
free energy can be written as F = � 1

� log Z(�). The free energy will serve as a
generating function due to the following lemma.

Lemma 129 (The free energy is a generating function for the Gibbs state). Con-
sider a Hamiltonian H =

P
a2[M ] �a Ea where the �a are regarded as formal vari-

ables. For non-zero � 2 C, we have

tr(Ea⇢�) =
@

@�a
F(�, �1, ..., �M )

for all a 2 [M ].
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Proof. Let us write

� 1

�

@

@�a
tr exp(��H) = � 1

�

1X

m=0

1

m!
tr


@

@�a
(��H)m

�

= � 1

�

1X

m=1

1

m!

mX

k=1

tr[(��H)k�1(��Ea)(��H)m�k]

=
1X

m=1

1

m!

mX

k=1

tr[Ea(��H)m�1]

= tr[Ea exp(��H)] ,

where we have used the linearity of the trace to move �’s outside of it, and the
cyclicity of the trace in going from the second line to the third line. We complete
the proof by observing that

� 1

�

@

@�a
log tr exp(��H) = � 1

�

1

tr exp(��H)

@

@�a
tr exp(��H) =

tr(Ea exp(��H))

tr exp(��H)
.

⇤

Thus to study series expansions of the form (36), it is natural to leverage the free
energy F. One minor annoyance of the free energy is that it does not converge as
� ! 0, going as ⇠ 1/�. This is not a problem of course, and motivates us to define
the ancillary quantity

L(�, �1, ..., �M ) := (��) F(�, �1, ..., �M ) = log tr exp

0

@��
X

a2[M ]

�a Ea

1

A ,

which goes to a constant as � ! 0. We will mostly use L henceforth.
Taking a step back, let us get a sense of what we want to prove. Consider the

toy function

f(�) =
1X

m=1

cm �m .

We would like to understand under what conditions on the cm’s is there a non-
zero radius of convergence. We recall from complex analysis that the radius of
convergence �c of a function of the form f(�) is given by

1

�c
= lim sup

m!1
|cm|1/m ,

and so �c is non-zero when the cm’s grow at most exponentially in m. In our more

complicated Gibbs setting, we will show that max�1,...,�M2[�1,1] |p
(a)
m (�1, ..., �M )|

indeed grows at most exponentially in m, which will do the job. Moreover, our �c

will not depend on M and thus on the number of sites n, which is desirable since
we would like our temperature bound to be system size independent. In particular,

we will show that each p(a)m satisfies two properties:

(1) Each p(a)m is a sum of at most ed(1 + e(d � 1))m monomials.

(2) The coe�cient in front of any monomial of p(a)m has magnitude at most
(2e(d + 1))m+1(m + 1).
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Putting these together, we will have

max
�1,...,�M2[�1,1]

|p(a)m (�1, ..., �M )|  e(m + 1)d(1 + e(d � 1))m(2e(d + 1))m+1

which manifestly grows at most exponentially in m, and is independent of M . The
key to getting M -independence will be to use the spatial locality structure of the
Hamiltonian.

To clarify the structure of the series expansion of L and thus F, it is useful to
introduce some notation. We first opt to write

L = log tr exp

0

@�
X

a2[M ]

za Ea

1

A where za := ��a .

We will take z = (z1, ..., zM ) 2 CM , i.e. considering complexified couplings for
purposes of assessing convergence. By the chain rule

@L
@�

=
X

a2[M ]

@za

@�

@L
@za

=
X

a2[M ]

�a
@L
@za

which gives us the multivariable series expansion

L =
1X

m=0

�m

m!

 
@mL
@�m

����
�=0

!

=
1X

m=0

�m

m!

X

a1,a2,...,am2[M ]

�a1 · · · �am

 
@mL

@za1 · · · @zam

����
z=(0,...,0)

!
. (38)

In the last equation, for each fixed m, we have an inner sum over m variables
a1, ..., am 2 [M ]. This, of course, is the standard structure for a multivariable
series expansion; it behooves us to write this in a more compact notation so that
it is more intelligible. To this end, we have the definition:

Definition 130 (Clusters of multivariate indices). A cluster V is a set of tuples
{(a, µ(a)) : a 2 [M ]} where µ : [M ] ! Z�0 counts the multiplicity of each a. Then
the total weight |V | of V is

P
a µ(a). We will write a 2 V if µ(a) � 1, and define

the support of V as SuppV := {a 2 [M ] : µ(a) � 1}. Finally, we define the
combinatorial factor V! :=

Q
a2[M ] µ(a)!.

This is sometimes called multi-index notation, where V is the multi-index. With
this notation in mind, let us rewrite (38) in a more compact manner, and define a
few more pieces of notation along the way. In particular, (38) can be written as

L =
1X

m=0

�m
X

V:|V|=m

1

V!

Y

a2SuppV

�µ(a)
a

0

@
Y

b2SuppV

@µ(b)

@zµ(b)
b

1

A

������
z=(0,...,0)

L

=
1X

m=0

X

V:|V|=m

1

V!

Y

a2SuppV

�µ(a)
a

| {z }
=:�V

0

@
Y

b2SuppV

@µ(b)

@�µ(b)
b

1

A

������
�=(0,...,0)| {z }

=:DV

L

=
1X

m=0

X

V:|V|=m

�V

V!
DVL (39)
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where we have introduced the notation �V and DV. The final form (39) is com-
pactly expressed and readily intelligible, and so was worth our e↵orts in notational
wrangling. The form of (39) makes the source of our di�culty clearer. For |V| = m
and any fixed V, the product rule expansion DVL näıvely has m! terms; then if we
supposed that each term has size “1” (in fact, size can be larger), we would have
the back-of-the-envelope estimate

X

V:|V|=m

1

V!
m! = Mm ,

which is the number of unique length-m strings of M symbols. This type of Mm

growth is exponential in m so would have a finite radius of convergence, but that
radius of convergence would go as ⇠ 1

M which gets worse as M (or accordingly, the
system size) gets larger, which we do not want. So we need to more cleverly exploit
the structure of derivatives of L and the locality of the Hamiltonian.

To proceed, we first show
P

V:|V|=m
�V

V! DVL contains much fewer than Mm

terms. Specifically, we show that DVL is non-zero only when V is connected, in
the following sense:

Definition 131 (Connected clusters). A cluster V = {(a, µ(a)) : a 2 [M ]} is
connected if the subgraph of G induced by the support of V is connected.

Then, as advertised, we have the following lemma:

Lemma 132. Recall that Z(�) = tr(e��H). If V0 and V00 are nonempty and mu-
tually disjoint and if there is no edge in G connecting V0 and V00, then DV0[V00Z =
(DV0Z)(DV00Z). Thus if a cluster V is not connected, then we have DVL = 0.

Proof. Let HV :=
P

a2SuppV �a Ea. Then HV0 and HV00 commute since the
supports of their constituent operators do not overlap. Moreover letting ZV :=
tr exp(��HV), we evidently have ZV0[V00 = ZV0ZV00 , and so we find

DV0[V00Z = DV0[V00ZV0[V00 = (DV0ZV0)(DV00ZV00) = (DV0Z)(DV00Z)

as we claimed.
Letting LV := log ZV, we see that LV0[V00 = LV0 + LV00 . Then we have

DV0[V00L = DV0[V00LV0[V00 = DV0[V00(LV0 + LV00) = 0 ,

which is zero because the V00 part of the derivative annihilates LV0 and the V0 part
of the derivative annihilates LV00 . ⇤

We have thus shown that a term DVL only contributes to (39) if V is a con-
nected cluster. Next, it will be useful to count the number of connected clusters V
such that V contains some particular vertex a, and |V| = w, i.e. we want to count
the number of clusters with weight w containing a. We do this below.

3.1.2. Counting the number of connected clusters of fixed weight

Recall that the dual interaction graph of our Hamiltonian is a graph G of
maximum degree at most d. For convenience, let us distinguish a ‘root’ vertex
a 2 V (G). We say that a cluster V = {(a, µ(a)) : a 2 [M ]} is rooted at a if
a 2 SuppV.

For k � 1 let NG(a, k) be the number of connected vertex sets S ✓ V (G) with
|S| = k and a 2 S (we will refer to such an S as a “connected support” of size k at


