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where we have introduced the notation AV and Dy. The final form (39) is com-
pactly expressed and readily intelligible, and so was worth our efforts in notational
wrangling. The form of (39) makes the source of our difficulty clearer. For |[V| =m
and any fixed V, the product rule expansion Dy L naively has m! terms; then if we
supposed that each term has size “1” (in fact, size can be larger), we would have
the back-of-the-envelope estimate

Z % m! =M™,
V:|V|=m

which is the number of unique length-m strings of M symbols. This type of M™
growth is exponential in m so would have a finite radius of convergence, but that
radius of convergence would go as ~ ﬁ which gets worse as M (or accordingly, the
system size) gets larger, which we do not want. So we need to more cleverly exploit
the structure of derivatives of £ and the locality of the Hamiltonian.

To proceed, we first show Zv:w\:m /\V\T Dv L contains much fewer than M™
terms. Specifically, we show that Dy L is non-zero only when V is connected, in
the following sense:

Definition 131 (Connected clusters). A cluster V = {(a,u(a)) : a € [M]} is
connected if the subgraph of ® induced by the support of V is connected.

Then, as advertised, we have the following lemma:

Lemma 132. Recall that Z(3) = tr(e ). If V' and V" are nonempty and mu-
tually disjoint and if there is no edge in & connecting V' and V", then Dy vy Z =
(DvZ)(Dvy+Z). Thus if a cluster V is not connected, then we have DyL = 0.

PROOF. Let Hvy = ZaESuppV Ao E,. Then Hyy and Hy» commute since the
supports of their constituent operators do not overlap. Moreover letting Zv :=
trexp(—fBHv), we evidently have Zv/ v~ = Zy Zy, and so we find

Dyviuvi Z = Doy Zviove = (Dyi Zy ) (Dyn Zyn) = (D Z) (D Z)

as we claimed.
Letting Lv := log Zv, we see that Lv/yv» = Ly + Lyv». Then we have

DV/UV,/ﬂ = Dvluv// EV’UV” = Dv/uv// (£V/ + Ev//> = O’

which is zero because the V" part of the derivative annihilates £v+ and the V' part
of the derivative annihilates Lv. O

We have thus shown that a term Dy L only contributes to (39) if V is a con-
nected cluster. Next, it will be useful to count the number of connected clusters V
such that V contains some particular vertex a, and |V| = w, i.e. we want to count
the number of clusters with weight w containing a. We do this below.

3.1.2. Counting the number of connected clusters of fired weight

Recall that the dual interaction graph of our Hamiltonian is a graph & of
maximum degree at most d. For convenience, let us distinguish a ‘root’ vertex
a € V(). We say that a cluster V = {(a,pu(a)) : a € [M]} is rooted at a if
a € SuppV.

For k > 1 let Ng(a, k) be the number of connected vertex sets S C V(&) with
|S| =k and a € S (we will refer to such an S as a “connected support” of size k at
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a). For w > 1, let Cg(a,w) be the number of connected clusters V of total weight
w rooted at a. Our goal will be to upper bound

max Cg(a,w

ac[M] 05( ) )
which will give us a bound on the number of clusters with weight w containing a.
For this, two elementary observations will be useful:

(1) If a support S has |S| = k vertices, the number of ways to assign positive
multiplicities summing to w is

#{p s Ypes nlb) =w, p(b) € Zu1} = (V7).

In particular, the multiplicity factor depends only on & (not on the geom-
etry of S).
(2) Consequently,

Co(a,w) = > Ne(a, k) (:’_ 11) (40)
k=1

Hence, if we want to upper bound Cg (a, w), it suffices to first upper bound
each Ng(a, k).

Our strategy will be to upper bound Ng(a, k) by
Ng(a, k) < max Ng(a, k),

~ H with degree <d
namely to maximize over all graphs $) with degree at most 9. The next proposition
establishes the desired maximization.

Proposition 133 (Tree maximizes rooted supports). For every k > 1 and every
graph & with A(®) <0,

Ng(a, k) < Np, (r, k), (41)

where Ty is the infinite 0-regular tree and r is its root. FEquivalently, among all
degree—< 0 graphs, the number of connected supports of size k rooted at a is mazi-
mized by Ty.

PROOF. We construct an injective map from the family of connected supports
S C V(&) of size k with a € S to the family of rooted subtrees of T, with k vertices
containing . Fix once and for all a total order on V(®). Given S, run breadth-first
search on the induced subgraph &[S] starting at a, breaking ties by the fixed order.
This yields a canonical rooted spanning tree Tg of S. In T the root has at most
0 children and each nonroot has at most ? — 1 children.

For each vertex v € V(&), fix an injective labeling o, : I'g (v) < {1,2,...,0} of
its neighbors. Direct the edges of T's away from the root and label each parent—child
edge u — v by the port number ¢(u — v) := «,(v). By construction, siblings of a
vertex use distinct port labels.

Now label the 0 edges incident to every vertex of T, with the symbols {1,...,0}.
Starting at r, read the labeled rooted tree (Tg, ) as instructions: from any vertex in
T, for each child edge of Ts bearing label j, follow the unique incident edge labeled
j. Distinct child labels ensure that the image is a well-defined rooted subtree of
size k. Denote the resulting subtree by ®(.5).
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From ®(S) one can recover the labeled rooted tree (Ts,?) (reading off port
labels along edges), and then recover S itself level-by-level: the children of u € §
are o, ! ({child-labels at u}). Hence ® is injective, and the claim follows. ]

Remark 134. The proposition formalizes the intuition that “unrolling cycles can-
not reduce the number of rooted connected substructures” under a local degree cap;
Ty is the universal cover of any degree—< 0 graph. In our cluster expansion, (40)
then shows that, for fired w and 0, the total number of rooted clusters is maximized
on Ty.

We now provide a quantitative bound on Nr, (r, k), which is the number of
rooted subtrees of T, with exactly k& vertices. This number does not depend on
the root since Ty is self-similar, and so we write N, (r, k) = Np, (k). We have the
lemma:

Lemma 135. For k € Z>, let Np, (k) be the number of all connected rooted sub-
trees with k nodes in the infinite 0-reqular tree. Then

Nr, (k) = <k(0k—_1)1—|— 1) ﬁ <ed(e(@—1)" "

This lemma follows from some standard generating function manipulations in ana-
lytic combinatorics, which are carried out in [HKT22].
By the above lemma, in conjunction with (40) and (41), we have

o) =3 Nata.b) (4}

< iNTa(k) (1]:_11)

and so we have obtained the following result:

Proposition 136. Let & be any graph with degree 0 > 2, and fix a € V(®). For
every w € Zsg, the number of connected clusters V of total weight w rooted at a
satisfies

Co(a,w) <ed(1+e(d— 1))w71.

In the degenerate case ® =1, a trivial estimate gives Cg(a, w) < w.

3.1.3. Estimating the size of cluster derivatives

Having estimated the number of (rooted) clusters with fixed weight, we now
turn to bounding the size of %Dvﬁ for fixed V. For |V| = m, we will ultimately
find a bound

iPvE| < e+ e
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which only depends on the degree of the graph 0, inverse temperature 3, and weight
m. In order to establish this bound, we will first prove an intermediate lemma which
bounds |Dy L[ in terms of a graph constructed from the data of V and @.

To construct such an ancillary graph, consider a fixed V. We define a graph
Gra(V) from V as follows. The set of vertices of Gra(V) is taken to be

Mar(V) = {(a,3) € (SuppV) x Zso : 1 <i < u(a)},

where ‘mar’ stands for ‘marked vertices’. Thus, Gra(V) has u(a) vertices corre-
sponding to each a € V|, giving |V| vertices in total. We impose that in Gra(V),
there is an edge between (a,i) and (a’,4') if and only if a = da’ or Supp(E,) N
Supp(E,) # 0 in the Hamiltonian. We have the following lemma from [WA23]:

Lemma 137 ([WA23]). Letting deg(v) denote the number of neighbors of a vertex
v € Gra(V), we have the bound

DvL| < BT[] (2deg(v)).
vEMarV

This lemma follows by an elaborate graph coloring argument, which is explicated
in a comprehensive manner in [HKT22]. For our purposes, this lemma is the main
ingredient in our proposition of interest:

Proposition 138. Let V be a cluster with weight |V] =m+1>1. Then

DyL| < (2¢(0+1)8)™ ",

1

|4

To prove this, we will need one more elementary algebraic lemma:
Lemma 139. Let p1, ..., tn, € Ryo and y1, ..., yn € R>o. Then

(L) (B) o (Bt )T

11 fin T\ 4+ ’

where equality holds when Y = ZY for all §.
Hej Zj Hj

PROOF. The inequality holds trivially if any y; = 0, so let us assume y; > 0 for all
i. If we take the log of both sides of the inequality and divide by >, j1; we find

() (2t

which is just Jensen’s inequality applied to a concave function of the logarithm. [

Now we turn to proving Proposition 138.

PROOF OF PROPOSITION 138. From the definition of Gra(V) we have that for any
b € SuppV,

deg((b,4)) = (u(d) = 1)+ Y ula), (42)

a€T'(b)
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where T'(b) is the set of neighbors of b in ® that appear in the cluster V. Then we
have the simple bound

Yo deg(b1)= Y | W) -1+ D pula)

beSuppV beSuppV a€T'(b)
<m+ > > pla)
beSuppV a€cl'(b)
<m+o(m+1), (43)

where in going from the first line to the second line we used g, pv(1(0) — 1) <
(ZbESuppV M(b)) —1=(m+1)—1=m, and in going from the second line to

the third line we used gm0y 2 aerm) M@) = X ev #(a) [{b € SuppV : b €
I'(a)}| <0, cv m(a) =0(m 4+ 1). Using Lemma 137 we have

1 2B m+1 w(b)
vilPvEl < IT ] des(®,)
’ beSuppV i=1
w(b)
m 1
besuppv MV a€T(b)
(b)
n(b) =143 erp) #a) g
< @2es)™t ] <
beSuppV M(b)

(I+9)(m+1)

m+1
D)~ e+ paym,

< (2e/)™* (
where in going from the first line to the second line we used (42), in going from the
second line to the third line we used u! > u%e™", and in going to the last line we
used (43) and Lemma 139. O

3.1.4. Bounds on the sizes of polynomials

Proposition 138 gives us a nice bound on the size of %Dvﬁ. Looking back
o (39), we see that this should allow us to bound the sizes of the polynomials

arising in the expansion of £. We put the pieces together below to achieve such a
bound, which comes from [HKT22]:

Theorem 140 (High-temperature Taylor expansion and size bounds). Let H =
>aeim) Aol be a Hamiltonian with known traceless Hermitian terms Eq, ||Eq| <
1, and unknown coefficients A\, € [—1,1]. Let & be its dual interaction graph of
mazimum degree 0, and write pg = e PH/Z(B) with Z(B) = tre 2. Then for
each a € [M] we have a (formal) B-series

(Ey)p = tr(E.ps

+Zﬂm @Ay, Aa), (44)

which holds as an identity whenever the series converges absolutely. Moreover, for
every m € Z~q the coefficient p( o) satisfies:
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(1) pﬁ,‘i) € R[A1,...,A\m] is a homogeneous polynomial of degree m in the
Hamiltonian coefficients.

(2) (Locality of dependence) p%) can involve Ny only if diste (a,b) < m.

(3) (Number of monomials) ) contains at most ed (1+e(@— 1))m mono-
maials.

(4) (Coefficient size) The magnitude of the coefficient in front of any mono-
mial of p&&) is at most (2e(2 + 1))™ 1 (m + 1).

If, in addition, each E, is a Pauli string supported on at most L qubits, then
after an O(LMdlogd) pre-processing (basis bookkeeping) the following algorithmic
statements hold for every m > 1:

(A) The list of monomials appearing in pgff) can be enumerated in time O(m o C)

where C' is the number of monomials; in particular in time O(mv?(1 + e(0 — 1))m).

(B) The coefficient of any specific monomial can be computed exactly (as a
rational number) in time O(Lm® + 8™m®log? m) = (8™ + L) poly(m).

A nice consequence of the theorem is as follows. Letting
7= (1+e(®@—1)) (20 +1)) <2e*(0+ 1),

Items 3 and 4 above imply that the series (44) converges absolutely whenever 8 <
1/7; in particular it suffices that 8 < 8. = Wlﬂ)?

We will provide a proof Items (1)-(4) of Theorem 140 using the ingredients we
have previously derived, and then discuss (A) and (B) which are proved in [HKT22].

PROOF OF ITEMS (1)-(4) IN THEOREM 140. Recall that £(A) :=logtrexp(—38>_, \vEj)

so that —% Or, L(N) = tr(Eupp). We recall that by analyticity of £ in a neigh-
borhood of the origin and the multivariate Taylor formula, we have the cluster
(multi-index) expansion

v
L) = ZO |Z %DVL‘. (45)
m>0V:|V|=m

Crucially, only connected clusters contribute by virtue of Lemma 132. Using

(Eo)p = —% Or, L(N\) and differentiating (45) termwise on a domain of absolute
convergence, we obtain
1 ANV
(EBu)p = -3 >y v DvE (46)
m=>0V:|V|=m+1 ’
acV

Every Dy L carries a factor 81V, so after accounting for the overall factor 1 /B in
(46) we can regroup terms by " with m = |V| — 1, arriving at (44) with

u m o\ DyvL
pgn)()\) =(-1) i Z VI pmtl (47)
V:|V|=m+1
a€V

Since each 9y, \V is a monomial of total degree m, Item (1) follows. Moreover,
because only connected clusters V contribute, any cluster counted in (47) must lie
within graph distance < m of a, giving Item (2).
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The number of connected clusters of total weight w = m + 1 that contain a is
at most e (1 + e(d — 1))*~! by Proposition 136, hence we have Item (3). Since
Proposition 138 gives the uniform bound

1 m
V!DVL” < (2¢(0+1)8) “,

and differentiating the monomial AV contributes at most a factor (m + 1) since
|0x,AV] < p(a) < m + 1. Dividing by ™! as in (47) yields Item (4): each

monomial coefficient in pi’ has size at most (2e(0 4+ 1)) (m +1). O

Now let us briefly discuss Items (A) and (B) in Theorem 140. For Item (A),
to enumerate all contributing monomials, one enumerates connected clusters of
weight m rooted at a by a breadth-first, layer-by-layer procedure (see Algorithm 1,
ie. “tails” in [HKT22]). Given random-access to neighbors in &, the total time
is O(m® C) where C is the number of clusters (hence monomials), giving Item (A).

For Item (B), to compute an individual coefficient exactly, [HKT22] shows
how to evaluate the needed cluster derivatives Dy L symbolically using faithful
Pauli representations, in time O(Lm3 + 8™m?® log? m).

3.2. Finding a solution using convexity

In the previous subsection we established a high-temperature expansion for
the observables (E,)3 = tr(E,pg) and proved quantitative bounds on the size and
locality of the resulting polynomials in Theorem 140. We now leverage those bounds

to show that £(\) = logtr (e_ﬁzaﬂf‘ﬂ )‘QE") is locally strongly convex in the high-

temperature regime. This convexity will be the key ingredient that lets us robustly
invert the map from Hamiltonian coefficients to thermal expectations, and thereby
learn the coefficients.

Fix a vector © = (21,...,7y) € [~1,1]™. By Theorem 140 we may write

oo
(Eg)p(x) = Z B p\@(z), pl9 homogeneous of degree m,
m=1

where pgff) only depends on entries x;, with diste (a,b) < m, and its number and size

of coefficients obey the bounds from Theorem 140 (Items (3)—(4)). In particular,
letting

7= (14e(®@—1))(2e(0+1)) <20+ 1)? (48)
as before, the sum of absolute coefficients of pgﬁ) is bounded by
em=e0(14+e(®@—1))™(2e(0 + 1)) (m +1)
=220+ 1) 7™ (m+1). (49)

For the learning task we will work with a shifted, truncated map F : [—1,1]M —
RM whose a-th component is

Mmax

Falz) =3 B p@ () = —Eq — Baq + 25 (@) + -+ AP0 (), (50)
m=0

where E, is an estimate of (E,) 5(A) obtained from measurements (so we set p(()a) =

fﬁa), p(la) () = —z, by a short computation, and mmay is a truncation order we



