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where we have introduced the notation �V and DV. The final form (39) is com-
pactly expressed and readily intelligible, and so was worth our e↵orts in notational
wrangling. The form of (39) makes the source of our di�culty clearer. For |V| = m
and any fixed V, the product rule expansion DVL näıvely has m! terms; then if we
supposed that each term has size “1” (in fact, size can be larger), we would have
the back-of-the-envelope estimate

X

V:|V|=m

1

V!
m! = Mm ,

which is the number of unique length-m strings of M symbols. This type of Mm

growth is exponential in m so would have a finite radius of convergence, but that
radius of convergence would go as ⇠ 1

M which gets worse as M (or accordingly, the
system size) gets larger, which we do not want. So we need to more cleverly exploit
the structure of derivatives of L and the locality of the Hamiltonian.

To proceed, we first show
P

V:|V|=m
�V

V! DVL contains much fewer than Mm

terms. Specifically, we show that DVL is non-zero only when V is connected, in
the following sense:

Definition 131 (Connected clusters). A cluster V = {(a, µ(a)) : a 2 [M ]} is
connected if the subgraph of G induced by the support of V is connected.

Then, as advertised, we have the following lemma:

Lemma 132. Recall that Z(�) = tr(e��H). If V0 and V00 are nonempty and mu-
tually disjoint and if there is no edge in G connecting V0 and V00, then DV0[V00Z =
(DV0Z)(DV00Z). Thus if a cluster V is not connected, then we have DVL = 0.

Proof. Let HV :=
P

a2SuppV �a Ea. Then HV0 and HV00 commute since the
supports of their constituent operators do not overlap. Moreover letting ZV :=
tr exp(��HV), we evidently have ZV0[V00 = ZV0ZV00 , and so we find

DV0[V00Z = DV0[V00ZV0[V00 = (DV0ZV0)(DV00ZV00) = (DV0Z)(DV00Z)

as we claimed.
Letting LV := log ZV, we see that LV0[V00 = LV0 + LV00 . Then we have

DV0[V00L = DV0[V00LV0[V00 = DV0[V00(LV0 + LV00) = 0 ,

which is zero because the V00 part of the derivative annihilates LV0 and the V0 part
of the derivative annihilates LV00 . ⇤

We have thus shown that a term DVL only contributes to (39) if V is a con-
nected cluster. Next, it will be useful to count the number of connected clusters V
such that V contains some particular vertex a, and |V| = w, i.e. we want to count
the number of clusters with weight w containing a. We do this below.

3.1.2. Counting the number of connected clusters of fixed weight

Recall that the dual interaction graph of our Hamiltonian is a graph G of
maximum degree at most d. For convenience, let us distinguish a ‘root’ vertex
a 2 V (G). We say that a cluster V = {(a, µ(a)) : a 2 [M ]} is rooted at a if
a 2 SuppV.

For k � 1 let NG(a, k) be the number of connected vertex sets S ✓ V (G) with
|S| = k and a 2 S (we will refer to such an S as a “connected support” of size k at
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a). For w � 1, let CG(a, w) be the number of connected clusters V of total weight
w rooted at a. Our goal will be to upper bound

max
a2[M ]

CG(a, w)

which will give us a bound on the number of clusters with weight w containing a.
For this, two elementary observations will be useful:

(1) If a support S has |S| = k vertices, the number of ways to assign positive
multiplicities summing to w is

#{µ :
P

b2S µ(b) = w, µ(b) 2 Z�1} =
�w�1

k�1

�
.

In particular, the multiplicity factor depends only on k (not on the geom-
etry of S).

(2) Consequently,

CG(a, w) =
wX

k=1

NG(a, k)

✓
w � 1

k � 1

◆
. (40)

Hence, if we want to upper bound CG(a, w), it su�ces to first upper bound
each NG(a, k).

Our strategy will be to upper bound NG(a, k) by

NG(a, k)  max
H with degree d

NH(a, k) ,

namely to maximize over all graphs H with degree at most d. The next proposition
establishes the desired maximization.

Proposition 133 (Tree maximizes rooted supports). For every k � 1 and every
graph G with �(G)  d,

NG(a, k)  NTd(r, k), (41)

where Td is the infinite d-regular tree and r is its root. Equivalently, among all
degree– d graphs, the number of connected supports of size k rooted at a is maxi-
mized by Td.

Proof. We construct an injective map from the family of connected supports
S ✓ V (G) of size k with a 2 S to the family of rooted subtrees of Td with k vertices
containing r. Fix once and for all a total order on V (G). Given S, run breadth-first
search on the induced subgraph G[S] starting at a, breaking ties by the fixed order.
This yields a canonical rooted spanning tree TS of S. In TS the root has at most
d children and each nonroot has at most d � 1 children.

For each vertex v 2 V (G), fix an injective labeling ↵v : �G(v) ,! {1, 2, . . . , d} of
its neighbors. Direct the edges of TS away from the root and label each parent!child
edge u ! v by the port number `(u ! v) := ↵u(v). By construction, siblings of a
vertex use distinct port labels.

Now label the d edges incident to every vertex of Td with the symbols {1, . . . , d}.
Starting at r, read the labeled rooted tree (TS , `) as instructions: from any vertex in
Td, for each child edge of TS bearing label j, follow the unique incident edge labeled
j. Distinct child labels ensure that the image is a well-defined rooted subtree of
size k. Denote the resulting subtree by �(S).



3. A STRATEGY FOR LEARNING GIBBS STATES AT HIGH TEMPERATURES 137

From �(S) one can recover the labeled rooted tree (TS , `) (reading o↵ port
labels along edges), and then recover S itself level-by-level: the children of u 2 S
are ↵�1

u ({child-labels at u}). Hence � is injective, and the claim follows. ⇤

Remark 134. The proposition formalizes the intuition that “unrolling cycles can-
not reduce the number of rooted connected substructures” under a local degree cap;
Td is the universal cover of any degree– d graph. In our cluster expansion, (40)
then shows that, for fixed w and d, the total number of rooted clusters is maximized
on Td.

We now provide a quantitative bound on NTd(r, k), which is the number of
rooted subtrees of Td with exactly k vertices. This number does not depend on
the root since Td is self-similar, and so we write NTd(r, k) = NTd(k). We have the
lemma:

Lemma 135. For k 2 Z�0, let NTd(k) be the number of all connected rooted sub-
trees with k nodes in the infinite d-regular tree. Then

NTd(k) =

✓
k(d � 1) + 1

k � 1

◆
d

k(d � 1) + 1
 e d (e(d � 1))k�1 .

This lemma follows from some standard generating function manipulations in ana-
lytic combinatorics, which are carried out in [HKT22].

By the above lemma, in conjunction with (40) and (41), we have

CG(a, w) =
wX

k=1

NG(a, k)

✓
w � 1

k � 1

◆


wX

k=1

NTd(k)

✓
w � 1

k � 1

◆


wX

k=1

e d(e(d � 1))k�1

✓
w � 1

k � 1

◆

= e d(1 + e(d � 1))w�1,

and so we have obtained the following result:

Proposition 136. Let G be any graph with degree d � 2, and fix a 2 V (G). For
every w 2 Z>0, the number of connected clusters V of total weight w rooted at a
satisfies

CG(a, w)  e d
�
1 + e(d � 1)

�w�1
.

In the degenerate case d = 1, a trivial estimate gives CG(a, w)  w.

3.1.3. Estimating the size of cluster derivatives

Having estimated the number of (rooted) clusters with fixed weight, we now
turn to bounding the size of 1

V!DVL for fixed V. For |V| = m, we will ultimately
find a bound

����
1

V!
DVL

����  (2e(d + 1)�)m+1
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which only depends on the degree of the graph d, inverse temperature �, and weight
m. In order to establish this bound, we will first prove an intermediate lemma which
bounds |DVL| in terms of a graph constructed from the data of V and G.

To construct such an ancillary graph, consider a fixed V. We define a graph
Gra(V) from V as follows. The set of vertices of Gra(V) is taken to be

Mar(V) := {(a, i) 2 (SuppV) ⇥ Z>0 : 1  i  µ(a)} ,

where ‘mar’ stands for ‘marked vertices’. Thus, Gra(V) has µ(a) vertices corre-
sponding to each a 2 V, giving |V| vertices in total. We impose that in Gra(V),
there is an edge between (a, i) and (a0, i0) if and only if a = a0 or Supp(Ea) \
Supp(Ea0) 6= ; in the Hamiltonian. We have the following lemma from [WA23]:

Lemma 137 ([WA23]). Letting deg(v) denote the number of neighbors of a vertex
v 2 Gra(V), we have the bound

|DVL|  |�||V|
Y

v2MarV

(2 deg(v)) .

This lemma follows by an elaborate graph coloring argument, which is explicated
in a comprehensive manner in [HKT22]. For our purposes, this lemma is the main
ingredient in our proposition of interest:

Proposition 138. Let V be a cluster with weight |V| = m + 1 � 1. Then
����

1

V!
DVL

����  (2e(d + 1)�)m+1 .

To prove this, we will need one more elementary algebraic lemma:

Lemma 139. Let µ1, ..., µn 2 R>0 and y1, ..., yn 2 R�0. Then

✓
y1
µ1

◆µ1

· · ·
✓

yn

µn

◆µn


✓

y1 + · · · + yn

µ1 + · · · + µn

◆µ1+···+µn

,

where equality holds when yj

µj
=

P
i yiP
j µj

for all j.

Proof. The inequality holds trivially if any yi = 0, so let us assume yi > 0 for all
i. If we take the log of both sides of the inequality and divide by

P
i µi we find

nX

i=1

µiP
j µj

log

✓
yi

µi

◆
 log

✓
y1 + · · · + yn

µ1 + · · · + µn

◆
,

which is just Jensen’s inequality applied to a concave function of the logarithm. ⇤

Now we turn to proving Proposition 138.

Proof of Proposition 138. From the definition of Gra(V) we have that for any
b 2 SuppV,

deg((b, i)) = (µ(b) � 1) +
X

a2�(b)

µ(a) , (42)
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where �(b) is the set of neighbors of b in G that appear in the cluster V. Then we
have the simple bound

X

b2SuppV

deg((b, 1)) =
X

b2SuppV

0

@(µ(b) � 1) +
X

a2�(b)

µ(a)

1

A

 m +
X

b2SuppV

X

a2�(b)

µ(a)

 m + d(m + 1) , (43)

where in going from the first line to the second line we used
P

b2SuppV(µ(b) � 1) ⇣P
b2SuppV µ(b)

⌘
� 1 = (m + 1) � 1 = m, and in going from the second line to

the third line we used
P

b2SuppV

P
a2�(b) µ(a) =

P
a2V µ(a) |{b 2 SuppV : b 2

�(a)}|  d
P

a2V µ(a) = d(m + 1). Using Lemma 137 we have

1

V!
|DVL|  (2�)m+1

V!

Y

b2SuppV

µ(b)Y

i=1

deg((b, i))

= (2�)m+1
Y

b2SuppV

1

µ(b)!

0

@µ(b) � 1 +
X

a2�(b)

µ(a)

1

A
µ(b)

 (2e�)m+1
Y

b2SuppV

 
µ(b) � 1 +

P
a2�(b) µ(a)

µ(b)

!µ(b)

 (2e�)m+1

✓
(1 + d)(m + 1)

m + 1

◆m+1

= (2e(d + 1)�)m+1,

where in going from the first line to the second line we used (42), in going from the
second line to the third line we used u! � uue�u, and in going to the last line we
used (43) and Lemma 139. ⇤

3.1.4. Bounds on the sizes of polynomials

Proposition 138 gives us a nice bound on the size of 1
V!DVL. Looking back

to (39), we see that this should allow us to bound the sizes of the polynomials
arising in the expansion of L. We put the pieces together below to achieve such a
bound, which comes from [HKT22]:

Theorem 140 (High-temperature Taylor expansion and size bounds). Let H =P
a2[M ] �aEa be a Hamiltonian with known traceless Hermitian terms Ea, kEak 

1, and unknown coe�cients �a 2 [�1, 1]. Let G be its dual interaction graph of
maximum degree d, and write ⇢� = e��H/Z(�) with Z(�) = tr e��H . Then for
each a 2 [M ] we have a (formal) �–series

hEai� := tr(Ea⇢�) =
tr(Ea)

d
+

1X

m=1

�m p(a)m (�1, . . . , �M ), (44)

which holds as an identity whenever the series converges absolutely. Moreover, for

every m 2 Z>0 the coe�cient p(a)m satisfies:
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(1) p(a)m 2 R[�1, . . . , �M ] is a homogeneous polynomial of degree m in the
Hamiltonian coe�cients.

(2) (Locality of dependence) p(a)m can involve �b only if distG(a, b)  m.

(3) (Number of monomials) p(a)m contains at most e d
�
1 + e(d � 1)

�m
mono-

mials.
(4) (Coe�cient size) The magnitude of the coe�cient in front of any mono-

mial of p(a)m is at most (2e(d + 1))m+1(m + 1).

If, in addition, each Ea is a Pauli string supported on at most L qubits, then
after an O(LMd log d) pre-processing (basis bookkeeping) the following algorithmic
statements hold for every m � 1:

(A) The list of monomials appearing in p(a)m can be enumerated in time O(m dC)
where C is the number of monomials; in particular in time O

�
m d

2
�
1 + e(d � 1)

�m�
.

(B) The coe�cient of any specific monomial can be computed exactly (as a
rational number) in time O

�
Lm3 + 8mm5 log2 m

�
= (8m + L) poly(m).

A nice consequence of the theorem is as follows. Letting

⌧ :=
�
1 + e(d � 1)

� �
2e(d + 1)

�
 2e2(d + 1)2,

Items 3 and 4 above imply that the series (44) converges absolutely whenever � <
1/⌧ ; in particular it su�ces that � < �c = 1

2e2(d+1)2 .

We will provide a proof Items (1)-(4) of Theorem 140 using the ingredients we
have previously derived, and then discuss (A) and (B) which are proved in [HKT22].

Proof of Items (1)-(4) in Theorem 140. Recall that L(�) := log tr exp
�
��
P

b �bEb

�

so that � 1
� @�aL(�) = tr(Ea⇢�). We recall that by analyticity of L in a neigh-

borhood of the origin and the multivariate Taylor formula, we have the cluster
(multi-index) expansion

L(�) =
X

m�0

X

V:|V|=m

�V

V!
DVL . (45)

Crucially, only connected clusters contribute by virtue of Lemma 132. Using
hEai� = � 1

� @�aL(�) and di↵erentiating (45) termwise on a domain of absolute
convergence, we obtain

hEai� = � 1

�

X

m�0

X

V:|V|=m+1
a2V

@�a�V

V!
DVL . (46)

Every DVL carries a factor �|V|, so after accounting for the overall factor 1/� in
(46) we can regroup terms by �m with m = |V| � 1, arriving at (44) with

p(a)m (�) = (�1)m+1
X

V:|V|=m+1
a2V

@�a�V

V!

DVL
�m+1

. (47)

Since each @�a�V is a monomial of total degree m, Item (1) follows. Moreover,
because only connected clusters V contribute, any cluster counted in (47) must lie
within graph distance  m of a, giving Item (2).
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The number of connected clusters of total weight w = m + 1 that contain a is
at most e d (1 + e(d � 1))w�1 by Proposition 136, hence we have Item (3). Since
Proposition 138 gives the uniform bound

����
1

V!
DVL

���� 
�
2e(d + 1) �

�m+1
,

and di↵erentiating the monomial �V contributes at most a factor (m + 1) since
|@�a�V|  µ(a)  m + 1. Dividing by �m+1 as in (47) yields Item (4): each

monomial coe�cient in p(a)m has size at most (2e(d + 1))m+1(m + 1). ⇤
Now let us briefly discuss Items (A) and (B) in Theorem 140. For Item (A),

to enumerate all contributing monomials, one enumerates connected clusters of
weight m rooted at a by a breadth-first, layer-by-layer procedure (see Algorithm 1,
i.e. “tails” in [HKT22]). Given random-access to neighbors in G, the total time
is O(m dC) where C is the number of clusters (hence monomials), giving Item (A).

For Item (B), to compute an individual coe�cient exactly, [HKT22] shows
how to evaluate the needed cluster derivatives DVL symbolically using faithful
Pauli representations, in time O(Lm3 + 8mm5 log2 m).

3.2. Finding a solution using convexity

In the previous subsection we established a high-temperature expansion for
the observables hEai� = tr(Ea⇢�) and proved quantitative bounds on the size and
locality of the resulting polynomials in Theorem 140. We now leverage those bounds

to show that L(�) = log tr
⇣
e��

P
a2[M] �aEa

⌘
is locally strongly convex in the high-

temperature regime. This convexity will be the key ingredient that lets us robustly
invert the map from Hamiltonian coe�cients to thermal expectations, and thereby
learn the coe�cients.

Fix a vector x = (x1, . . . , xM ) 2 [�1, 1]M . By Theorem 140 we may write

hEai�(x) =
1X

m=1

�m p(a)m (x) , p(a)m homogeneous of degree m,

where p(a)m only depends on entries xb with distG(a, b)  m, and its number and size
of coe�cients obey the bounds from Theorem 140 (Items (3)–(4)). In particular,
letting

⌧ := (1 + e(d � 1)) (2e(d + 1))  2e2(d + 1)2 (48)

as before, the sum of absolute coe�cients of p(a)m is bounded by

cm = e d (1 + e(d � 1))m (2e(d + 1))m+1(m + 1)

= 2e2d(d + 1) ⌧ m(m + 1) . (49)

For the learning task we will work with a shifted, truncated map F : [�1, 1]M !
RM whose a-th component is

Fa(x) :=
mmaxX

m=0

�m p(a)m (x) = � bEa � � xa + �2p(a)2 (x) + · · · + �mp(a)mmax
(x) , (50)

where bEa is an estimate of hEai�(�) obtained from measurements (so we set p(a)0 :=

� bEa), p(a)1 (x) = �xa by a short computation, and mmax is a truncation order we


