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The number of connected clusters of total weight w = m + 1 that contain a is
at most e (1 + e(d — 1))*~! by Proposition 136, hence we have Item (3). Since
Proposition 138 gives the uniform bound

1 m
V!DVL” < (2¢(0+1)8) “,

and differentiating the monomial AV contributes at most a factor (m + 1) since
|0x,AV] < p(a) < m + 1. Dividing by ™! as in (47) yields Item (4): each

monomial coefficient in pi’ has size at most (2e(0 4+ 1)) (m +1). O

Now let us briefly discuss Items (A) and (B) in Theorem 140. For Item (A),
to enumerate all contributing monomials, one enumerates connected clusters of
weight m rooted at a by a breadth-first, layer-by-layer procedure (see Algorithm 1,
ie. “tails” in [HKT22]). Given random-access to neighbors in &, the total time
is O(m® C) where C is the number of clusters (hence monomials), giving Item (A).

For Item (B), to compute an individual coefficient exactly, [HKT22] shows
how to evaluate the needed cluster derivatives Dy L symbolically using faithful
Pauli representations, in time O(Lm3 + 8™m?® log? m).

3.2. Finding a solution using convexity

In the previous subsection we established a high-temperature expansion for
the observables (E,)3 = tr(E,pg) and proved quantitative bounds on the size and
locality of the resulting polynomials in Theorem 140. We now leverage those bounds

to show that £(\) = logtr (e_ﬁzaﬂf‘ﬂ )‘QE") is locally strongly convex in the high-

temperature regime. This convexity will be the key ingredient that lets us robustly
invert the map from Hamiltonian coefficients to thermal expectations, and thereby
learn the coefficients.

Fix a vector © = (21,...,7y) € [~1,1]™. By Theorem 140 we may write

oo
(Eg)p(x) = Z B p\@(z), pl9 homogeneous of degree m,
m=1

where pgff) only depends on entries x;, with diste (a,b) < m, and its number and size

of coefficients obey the bounds from Theorem 140 (Items (3)—(4)). In particular,
letting

7= (14e(®@—1))(2e(0+1)) <20+ 1)? (48)
as before, the sum of absolute coefficients of pgﬁ) is bounded by
em=e0(14+e(®@—1))™(2e(0 + 1)) (m +1)
=220+ 1) 7™ (m+1). (49)

For the learning task we will work with a shifted, truncated map F : [—1,1]M —
RM whose a-th component is

Mmax

Falz) =3 B p@ () = —Eq — Baq + 25 (@) + -+ AP0 (), (50)
m=0

where E, is an estimate of (E,) 5(A) obtained from measurements (so we set p(()a) =

fﬁa), p(la) () = —z, by a short computation, and mmay is a truncation order we
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will later choose polylogarithmic in 1/(8e). Our strategy will be to find an x such
that F,(z) is small for all a € [M]; we will argue that if we can do then, then x is
guaranteed to be closed to the true couplings A by a convexity argument.

Here we will articulate our basic proof strategy. Let J(z) = dF(x) be the
Jacobian of F, namely

Jap(x) = Falx).

Oy

Recall that the norm || - ||oc— oo is defined by || A]|co—o00 = Maxz£o H@gﬁ[‘;. Then the
idea is to use Newton iteration to find a x such that ||z — \||cc < O(€); doing so will
involve bounding the size of the inverse Jacobian J~! which plays an important
role in Newton iteration, as well as the size of F(\) which is the target value of F.

To prepare for our Newton’s method procedure, we will want to first establish

the following facts:

(1) For suitable conditions on 8 and 9, we have [|J(2) ™} sosoo < 287! for
all mpyay > 1.

(2) For any € > 0, we can choose muyax sufficiently large (with suitable con-
ditions on § and 0) such that [|[F(A)]|e < O(Be).

For the first condition, we really only need the condition to hold for m,.x sufficiently
large, but in fact we will show that it holds for all myay > 1.

We will begin by establishing the first condition, and then treat the second. To
this end, we have the following lemma.

Lemma 141. Suppose that
100e®(d+1)*8 < 1. (51)

Then for any x € [—1, 11, we have [|[1+ 87T (2)||comoe < 5 and [|J (@) ™ oomsoo <
26871 for any Mmax > 1.

PROOF. We note that if |1 + 87 J|ao—s0e < 3, then since

we would have

oo
1T loomsoo < B7HY I+ 87 |y <287
k=0

Thus it suffices to show [|[1+871J(%)||somsoo < 3, or equivalently || 31+J () [ somsoo <

g, for our stated domain of 5.
We observe that the Jacobian takes the form

Jab - _ﬂ 6ab + 0(52) 5
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and so 1 + J = O(?%). As such, we would like to bound the O($?) remainder.
Let u = (u1, ..., ups) satisfy |up| <1 for all b, i.e. ||ul|o < 1. Then we have

(J+B1)w)a =D (T + B1)apus

b

o0 0
_ 2 (a) . Mmax (a)
gb Up (5 oz Py () + + oy Prsnax (I)>
Mmax P

>t Y wy ),

k=2 b:diste (a,b)<k

where in going to the last line we have used Item (2) of Theorem 140. We observe
that in the last sum, at each fixed k, the index b ranges over at most 14+0+- - -4+0F <
(0 + 1) vertices of . Now recall that each péa) is a homogeneous polynomial of
degree k, and that the bum of the absolute values of the coefficients is bounded by

¢ in (49). Therefore ‘0 2 (a) <

((J + BL)u |<ZB’“ (0 + 1) kex

oo
<20+ 1)°(B+ 1)r)? Y (B + 1)r)F2k(k + 1)
k=2

r-ﬁ(ﬁ+1)‘r>

In going from the second line to the third line we used 5(? + 1)7 < 1, and in going
to the last line we used 8(d 4+ 1)7 < 1i5. Since our u satisfying [Julloc < 1 was
arbitrary, we have obtained the bound [|J + B1||so—00 < 22 €%(0 + 1)*5%72. Using

6 — 61 + 212

=2¢*(d +1)*p%7? < T

2
< Byt

7 < 2e2(0 + 1)? from (48) and 100e®(d + 1)33 < 1 from (ol), we find our desired
bound || + B1[|oosee < 5. 0

A nice consequence of the above lemma is the following convexity result:
Lemma 142. If (51) holds, then V®2L = 2 ]1 namely L is ( ) strongly convet.

PROOF. Take mmayx = 00 so that V®2L = —3J, where we note that the Jacobian
J is Hermitian. For a Hermitian matrix X, we have || X| < || X||co—oo, and so
[T+ 87| < |11+ B J|lwsoe < 3, implying that 1 + $7*J < 1/2 and thus
—1 . e . 2 BQ
B71J % —1/2, which is equivalent to V®2L > 51 |
Next let us show that if mpyay is chosen to scale at least logarithmically in

1/(Be), then we can arrange for ||F(A)|lcoc < O(Be). First we require the following
lemma.

Lemma 143 (Estimating thermal expectations in parallel). For any €,6 € (0,1)
there is a measurement procedure that (given independent copies of pg) produces
estimators E, such that

}Ea—<Ea>5|§5e for all a € [M]
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simultaneously with probability at least 1 — &, using

0 M
(2 sy

copies of pg and with time complexity

NDd M

PROOF. We first recall a standard fact: given a quantum state p and a Hermitian
observable E with ||E|| < 1, one can estimate tr(Ep) to additive error gy with
success probability at least 1 — dy using O(log(1/dy)/c3) independent copies of
p. Indeed, measuring p in the eigenbasis of F yields an i.i.d. random variable in
[—1, 1] whose expectation is tr(Ep); Hoeflding bounds then give the stated sample
complexity.

We now apply this in parallel to the family {FE,}qca. Color the vertices of
the dual interaction graph & using at most 9+ 1 colors (a greedy coloring suffices).
By definition of &, all E, belonging to a fixed color class act on disjoint sets of
qubits. Consequently, on a single copy of pg we can measure all E, in that color
class simultaneously: since each FE, is a Pauli string, it suffices to measure each
qubit once in the appropriate single-qubit Pauli basis and multiply outcomes to
obtain the eigenvalue of each E, in the class.

Fix a color class and set the target accuracy per observable to ¢ := fe. By the
single-observable estimate and a union bound over all a in the class, O (log(1/dy)/e3)

copies of pg suffice to ensure that every Ea in that class satisfies |Ea —(Ea)gl <eo
with probability at least 1 — §p. Repeating independently for each of the at most
0 + 1 color classes, the total number of copies is

o+ 1)0(%) = 0(5212 log610> .

€0

Choosing dg := §/M and applying a union bound across all M observables yields
simultaneous accuracy |E, — (Eq)| < pe for every a € [M] with probability at
least 1 — ¢, and the stated copy complexity O(ﬁ log %) follows.

For the time complexity, note that each copy used in a given color round requires
at most N single-qubit Pauli measurements (one per qubit), and there are (0 +
1) O(log(1/80)/<2) such copies overall. This gives time

0 M
as claimed. O

This lemma tells us that we can set |E, — (Eq)p] < O(Pe) for all a. With this in
mind, we have the following.

Lemma 144. Assume the high-temperature condition (51). Let T be as in (48) and
set r := 1. Suppose the empirical means obey |Ea - (Ea>g‘ < Be for all a € [M].
If the truncation order mmyayx in (50) satisfies

(2,’,,) Mmax+1 < 55

RIS %2
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then ||F(N\)||eo < 28e. Equivalently, it suffices to take

4e20(0+1)
log‘<)
> pe

mmax -
1°g<2ﬁ )

In particular, for constant 0 we have myax = O(log(1/(Be))).

1. (53)

PrOOF. By the definition (50) and the triangle inequality,
1FaN)| < |Ba— Ea)s| + D BP0 <Be+ Y B™em.

M>Mmax M>Mmax

Thus, with r = g,
Z B™ ey = 26200 + 1) Z (m+1)r

M>Mmax M>Mmax

For m > 1 we may use (m + 1) < 2™, where (since 2r < 1)
Qr)mmdx+1

Z (m+1)r Z *1_7276

M>Mmax M>Mmax

The high-temperature hypothesis (51) implies » < 1 (and hence 2r < 1); in partic-
ular, 1/(1 — 2r) < 2. Therefore

Z B™ e < 4€20(0 + 1) (2r) Mmax T

mM>Mmax

Imposing (52) makes the right-hand side at most B¢, and hence |F,(\)| < 28¢ for
all a. Taking the maximum over a yields ||F(A)]|c < 28e.

Finally, solving (52) for myax gives (53); since 287 < 1 under (51), the denomi-
nator is a positive constant when 9 is constant, proving the claimed O(log(1/(B8¢)))
scaling. 0

Finally, we show that we can efficiently find an x such that || — Ao < 18e¢.

Theorem 145 (High-temperature learning via projected Newton-Raphson). As-
sume the high-temperature condition (51). Suppose we are given estimates { Eq }ae[n]

of the thermal expectations (E,)s obeying ‘Ea — (Ea)p| < Be for all a € [M].
Moreover let us take € < % Then there is a classical algorithm (a projected
Newton-Raphson scheme with a truncated Neumann-series inverse) that outputs

€ [-1, 1M such that ||z — A|| < 18¢ in time O(2Lpoly(d, log Bs))’ where L is

the maximum number of qubits on which any Hamzltoman term acts.

PROOF SKETCH. Let us choose the judicious bound

2 2
M > e 1 o 12e%(0+ 1)

e—1 log<5%) ¢ Be log(ﬁ%)

which is compatible with our previous one. The Newton-Raphson method
ordinarily entails an iteration like z(**1 = () — (J=1F)(z(®), although to avoid
computing the inverse of J we will instead consider an approximation J(z)~! ~
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e 2{2—01 (1+p~1J(x))* for a sufficiently large K that we will specify. Specifically,
we consider the iteration

K
2O =0, D = Proj_y qjar ¥ 4 gt Z(]l + 87 T (@W))FF (™)
k=1

where we have used

1 ifue(l,o0)
Proj(u) :==<u ifue[-1,1
-1 ifue(—o0,1)

and take K = [log, ()]

Before analyzing the convergence of the iterations, let us examine the error e(*)
between J (1)1 F(z®) and 71 S (1 + 71 J (x0)) F(x®). Specifically, we
have

=J 7 @)@+ BT FEY),

which by Lemma 141 decays exponentially in K in the || - ||oo norm. This will be
useful for us shortly.

With the error e® under control, let us examine the convergence of z(¥) under
our Newton-Raphson iteration. Let F,(s) : [0,1] — R by defined by F,(s) :=
Fao(x + s(A — z)). By Taylor’s remainder theorem, there exists an s’ € [0,1] such
that

Full) = Fal0) +OF)0) + H@F)E).
——  ——
=Fa(A) = Fa(x)

Using 05 = >, (Ay — )0, and setting Y@ = '\ + (1 — §')z, we find

Fa(A) = Falz) + Xb:(% — Tp) (%faz(;ﬁ) +% bZ;O\b = 2p)(Ae = 2)(D50:F ) (') -
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Letting A® := 2® — X\ (and similarly AC¢+D) .= z(t+1) _ \) where A((;) denotes the
dth coordinate, we have the following;:

AG) = |Proji_y yl(@ = (I F) (@) + e)a] = Aa|
(@ = (I F) (@) + e)a = Ad|

IN

(t) —i—A() Z(J( (t))—l)d F, (aj(t))
= ZJ t)da< Z)‘b_x Jap(z®)

b
-5 x£f>>[abacfa1<y<“>>> |
b,c

M\H

[em L A® _J(x(t))—lj_'()\)_J(x(t))—lj(l-(t))A(t)]d

1 — a
5 2 ) A AP 0,0.F)(y)

a,b,c

70 (14 57T O)EF ) - m))]

d

+ = Z )7L AN AD[0,0, ] () | (54)

abc

We will bound each term in the last equation in turn. For the first part, we have

@) (@4 871K FE) - F)]

d

< T @) oosoe (T + 872 T @) E oo IF @ Dllow + 1F(N) )
<2871 (275(2+ Be) + 28¢) < 6e. (55)

In going to the last line we have used Lemma 141 and Lemma 144, in conjunction
with

Mmax

a)p + Z B*|py?
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For the last term in (54), we have for all indices d the inequalities

3 T A AL [8,0.F) (4 )

a,b,c

1
2

< SITED)  ooroo max | D AL AL (9,0, Fa) ()
b,c

i () A (1) Ak ()
maaXI;);|Ab AL B |0v0epy” (y)

> A B Kk~ e
0 b,c:

diste (b,a)<k

diste (c,a)<k

IN

™| =

=~
Il

IA
™|~
WK

@+ D*[AV)Z, B k(K — e

IN
™|~
bl
gk

12

:TeHA(t)HiO(D—i—l)Q (B(d + 1)27)2

(1—-p(0+1)2r)4
<2 280+ 1) A0, (56)

where in going to the second-to-last line we have used that 3(d + 1)?7 < 1 and in

going to the last line we have used that 027 <1 — (%)1/4. Putting together (55)
and (56) we find

25
JACD | < 62+ = 250+ 1S AV,

By solving the recursion, one can show that so long as ||A©) ||, <

1
< s S 1

)

we achieve ||2(T) — \||o < 18¢ for
T = [—log,(300e5 (2 + 1)'°8¢)7 .

Finally, let us sketch the runtime bound. For each a € [M], the truncated
series Fu(z) = D.1v, ﬁkp,(ca) () — E,is a degree-m polynomial whose support is
contained in the radius-k neighborhoods of a in &; the number of contributing
terms at order k is at most poly(?) (9 +1)* and each coefficient can be evaluated in
time O(L poly(k)). Hence, evaluating all M coordinates of F(x) and forming (or
applying) the nonzeros of the sparse Jacobian J(x) at a given point z costs

O(M Lpoly@) S (@ + 1)’“) = O(M Lpoly(d) (2 + 1)°0m).
k=0

One Newton step uses the truncated Neumann-series inverse 371 25;01 (1+871J(x)) k,

which requires K sparse matrix—vector multiplies with J(z), and thus has cost
O(K M Lpoly(d) (0 + 1)) at iteration = (). The projection Proji_q 1jm
adds only O(M) time. With T' Newton iterations in total, the overall runtime is

O((K +1)TM Lpoly(d) (@ + 1)0<m>).
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Substituting in our parameter choices yields the stated time complexity:
ML 1
O( poly(D,log)) .
€ Be

To summarize, we have succeeded in establishing that, for suitable 3, 0, and
Mmax, We have ||z — A||cc < O(€). Below we will put together all of our results thus
far to get the final, overarching algorithm and associated bounds.

O

3.3. Putting the bounds together

We can combine all of the results above to get the main result of [HKT22].
We recapitulate some of the notation we have collected along the way.

Theorem 146 (Learning from high-temperature Gibbs states). Let H = 3~ ¢y AaEa
be a low-intersection Hamiltonian on N qubits: each non-identity Pauli term E,
acts on at most L = O(1) qubits and the dual interaction graph has mazimum
degree © = O(1). Fix inverse temperature 8 > 0 obeying the high-temperature con-
dition (51) (equivalently 8 < .(d) for a universal constant B. > 0 depending only
on 0), and let pg = e PH [tr(e=PH),

For any € € (0, 75) and failure probability 6 € (0,1), there is a classical algo-
rithm which, given independent copies of pg, outputs Ne [—1, 1M satisfying

A = Alloo < 18¢
with probability at least 1 — §, using

0 M
Soo = O<5252 log (5)

copies of pg. In particular, when 9 = O(1) and M = ©(N), this is
log N
Soc = O( 222 > .

Consequently, to achieve ly-error ||3\\ — M2 < e it suffices to use

M M N N

The total running time is linear in the sample size (i.e. O(SN) where S is the
number of copies used), up to polylogarithmic factors in 1/(Be).

PROOF. Assume (51) and let 7 be as in (48). We can estimate all thermal expecta-
tions in parallel (via Lemma 143) to obtain {Ea}ae[M] with |E, — (Eq)p| < Be for
every a using Sec = O( 52z log ) copies of pg, with success probability > 1 — 4.

Define F as in (50) and choose the truncation order mpax as in (53). Then
Lemma 144 gives ||[F(A)|loc < 28e. By the high-temperature conditioning in
Lemma 141, we have

[1+B87'(2)csoo <5 and [[J(2) M oosoo <2871, for allz € [—1,1]M.

We run the projected Newton—Raphson update with truncated Neumann in-
verse in Theorem 145 from z(®) = 0 and with K = [logy(3)]. The one-step anal-
ysis yields the recursion A+ | < 6e + CB[|AD |2, with C = Ze?(d + 1)572.
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Solving this recursion with 7' = [—log, (300€%(2+1)'°8¢) | gives [|z(1) = || < 18¢.
We set X := () to obtain the claimed accuracy with probability > 1 — 4.

The sample bound is exactly that of Lemma 143, and for @ = O(1) and
M = O(N) it simplifies to See = O(logN). The ¢5 statement follows by tar-

ﬁ2€2
geting [|A — Ao < /v M, which replaces € by €/v/ M in Lemma 143, yielding Sy =
O(ﬁg—l‘/ﬁ2 log %) The runtime is O(S N) for data collection plus O ( MlL poly (0, log é))
for classical postprocessing, which is linear in the sample size up to polylogarithmic
factors in 1/(Be). O




