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The number of connected clusters of total weight w = m + 1 that contain a is
at most e d (1 + e(d � 1))w�1 by Proposition 136, hence we have Item (3). Since
Proposition 138 gives the uniform bound

����
1

V!
DVL

���� 
�
2e(d + 1) �

�m+1
,

and di↵erentiating the monomial �V contributes at most a factor (m + 1) since
|@�a�V|  µ(a)  m + 1. Dividing by �m+1 as in (47) yields Item (4): each

monomial coe�cient in p(a)m has size at most (2e(d + 1))m+1(m + 1). ⇤
Now let us briefly discuss Items (A) and (B) in Theorem 140. For Item (A),

to enumerate all contributing monomials, one enumerates connected clusters of
weight m rooted at a by a breadth-first, layer-by-layer procedure (see Algorithm 1,
i.e. “tails” in [HKT22]). Given random-access to neighbors in G, the total time
is O(m dC) where C is the number of clusters (hence monomials), giving Item (A).

For Item (B), to compute an individual coe�cient exactly, [HKT22] shows
how to evaluate the needed cluster derivatives DVL symbolically using faithful
Pauli representations, in time O(Lm3 + 8mm5 log2 m).

3.2. Finding a solution using convexity

In the previous subsection we established a high-temperature expansion for
the observables hEai� = tr(Ea⇢�) and proved quantitative bounds on the size and
locality of the resulting polynomials in Theorem 140. We now leverage those bounds

to show that L(�) = log tr
⇣
e��

P
a2[M] �aEa

⌘
is locally strongly convex in the high-

temperature regime. This convexity will be the key ingredient that lets us robustly
invert the map from Hamiltonian coe�cients to thermal expectations, and thereby
learn the coe�cients.

Fix a vector x = (x1, . . . , xM ) 2 [�1, 1]M . By Theorem 140 we may write

hEai�(x) =
1X

m=1

�m p(a)m (x) , p(a)m homogeneous of degree m,

where p(a)m only depends on entries xb with distG(a, b)  m, and its number and size
of coe�cients obey the bounds from Theorem 140 (Items (3)–(4)). In particular,
letting

⌧ := (1 + e(d � 1)) (2e(d + 1))  2e2(d + 1)2 (48)

as before, the sum of absolute coe�cients of p(a)m is bounded by

cm = e d (1 + e(d � 1))m (2e(d + 1))m+1(m + 1)

= 2e2d(d + 1) ⌧ m(m + 1) . (49)

For the learning task we will work with a shifted, truncated map F : [�1, 1]M !
RM whose a-th component is

Fa(x) :=
mmaxX

m=0

�m p(a)m (x) = � bEa � � xa + �2p(a)2 (x) + · · · + �mp(a)mmax
(x) , (50)

where bEa is an estimate of hEai�(�) obtained from measurements (so we set p(a)0 :=

� bEa), p(a)1 (x) = �xa by a short computation, and mmax is a truncation order we
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will later choose polylogarithmic in 1/(�"). Our strategy will be to find an x such
that Fa(x) is small for all a 2 [M ]; we will argue that if we can do then, then x is
guaranteed to be closed to the true couplings � by a convexity argument.

Here we will articulate our basic proof strategy. Let J(x) = dF(x) be the
Jacobian of F , namely

Jab(x) =
@

@xb
Fa(x) .

Recall that the norm k ·k1!1 is defined by kAk1!1 = maxx 6=0
kAxk1
kxk1 . Then the

idea is to use Newton iteration to find a x such that kx��k1  O("); doing so will
involve bounding the size of the inverse Jacobian J�1 which plays an important
role in Newton iteration, as well as the size of F(�) which is the target value of F .

To prepare for our Newton’s method procedure, we will want to first establish
the following facts:

(1) For suitable conditions on � and d, we have kJ(x)�1k1!1  2��1 for
all mmax � 1.

(2) For any " > 0, we can choose mmax su�ciently large (with suitable con-
ditions on � and d) such that kF(�)k1  O(�").

For the first condition, we really only need the condition to hold for mmax su�ciently
large, but in fact we will show that it holds for all mmax � 1.

We will begin by establishing the first condition, and then treat the second. To
this end, we have the following lemma.

Lemma 141. Suppose that

100e6(d + 1)8�  1 . (51)

Then for any x 2 [�1, 1]M , we have k1+��1J(x)k1!1  1
2 and kJ(x)�1k1!1 

2��1 for any mmax � 1.

Proof. We note that if k1+ ��1Jk1!1  1
2 , then since

J�1 = � 1

�

1

1� (1� ��1J)
= � 1

�

1X

k=0

(1+ ��1J)k ,

we would have

kJ�1k1!1  ��1
1X

k=0

k1+ ��1Jkk
1!1  2��1 .

Thus it su�ces to show k1+��1J(x)k1!1  1
2 , or equivalently k�1+J(x)k1!1 

�
2 , for our stated domain of �.

We observe that the Jacobian takes the form

Jab = �� �ab + O(�2) ,



3. A STRATEGY FOR LEARNING GIBBS STATES AT HIGH TEMPERATURES 143

and so �1 + J = O(�2). As such, we would like to bound the O(�2) remainder.
Let u = (u1, ..., uM ) satisfy |ub|  1 for all b, i.e. kuk1  1. Then we have

((J + �1)u)a =
X

b

(J + �1)abub

=
X

b

ub

✓
�2 @

@xb
p(a)2 (x) + · · · + �mmax

@

@xb
p(a)mmax

(x)

◆

=
mmaxX

k=2

�k
X

b : distG(a,b)k

ub
@

@xb
p(a)k (x) ,

where in going to the last line we have used Item (2) of Theorem 140. We observe
that in the last sum, at each fixed k, the index b ranges over at most 1+d+· · ·+d

k 
(d + 1)k vertices of G. Now recall that each p(a)k is a homogeneous polynomial of
degree k, and that the sum of the absolute values of the coe�cients is bounded by

ck in (49). Therefore
��� @
@xb

p(a)k

���  kck in the domain of F , and we have

|((J + �1)u)a| 
1X

k=2

�k(d + 1)kkck

 2e2(d + 1)2(�(d + 1)⌧)2
1X

k=2

(�(d + 1)⌧)k�2k(k + 1)

= 2e2(d + 1)4�2⌧2

 
6 � 6r + 2r2

(1 � r3)

����
r=�(d+1)⌧

!

 25

2
e2(d + 1)4�2⌧2 .

In going from the second line to the third line we used �(d+ 1)⌧ < 1, and in going
to the last line we used �(d + 1)⌧  1

100 . Since our u satisfying kuk1  1 was
arbitrary, we have obtained the bound kJ + �1k1!1  25

2 e2(d + 1)4�2⌧2. Using
⌧  2e2(d + 1)2 from (48) and 100e6(d + 1)8�  1 from (51), we find our desired
bound kJ + �1k1!1  �

2 . ⇤
A nice consequence of the above lemma is the following convexity result:

Lemma 142. If (51) holds, then r⌦2L ⌫ �2

2 1, namely L is (�2

2 )-strongly convex.

Proof. Take mmax = 1 so that r⌦2L = ��J , where we note that the Jacobian
J is Hermitian. For a Hermitian matrix X, we have kXk  kXk1!1, and so
k1 + ��1Jk  k1 + ��1Jk1!1  1

2 , implying that 1 + ��1J � 1/2 and thus

��1J � �1/2, which is equivalent to r⌦2L ⌫ �2

2 1. ⇤
Next let us show that if mmax is chosen to scale at least logarithmically in

1/(�"), then we can arrange for kF(�)k1  O(�"). First we require the following
lemma.

Lemma 143 (Estimating thermal expectations in parallel). For any ", � 2 (0, 1)
there is a measurement procedure that (given independent copies of ⇢�) produces

estimators bEa such that
�� bEa � hEai�

��  � " for all a 2 [M ]
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simultaneously with probability at least 1 � �, using

O

✓
d

�2"2
log

M

�

◆

copies of ⇢� and with time complexity

O

✓
N d

�2"2
log

M

�

◆
.

Proof. We first recall a standard fact: given a quantum state ⇢ and a Hermitian
observable E with kEk  1, one can estimate tr(E⇢) to additive error "0 with
success probability at least 1 � �0 using O

�
log(1/�0)/"20

�
independent copies of

⇢. Indeed, measuring ⇢ in the eigenbasis of E yields an i.i.d. random variable in
[�1, 1] whose expectation is tr(E⇢); Hoe↵ding bounds then give the stated sample
complexity.

We now apply this in parallel to the family {Ea}a2[M ]. Color the vertices of
the dual interaction graph G using at most d+1 colors (a greedy coloring su�ces).
By definition of G, all Ea belonging to a fixed color class act on disjoint sets of
qubits. Consequently, on a single copy of ⇢� we can measure all Ea in that color
class simultaneously: since each Ea is a Pauli string, it su�ces to measure each
qubit once in the appropriate single-qubit Pauli basis and multiply outcomes to
obtain the eigenvalue of each Ea in the class.

Fix a color class and set the target accuracy per observable to "0 := �". By the
single-observable estimate and a union bound over all a in the class, O

�
log(1/�0)/"20

�

copies of ⇢� su�ce to ensure that every bEa in that class satisfies | bEa � hEai� |  "0
with probability at least 1 � �0. Repeating independently for each of the at most
d + 1 color classes, the total number of copies is

(d + 1) O
⇣ log(1/�0)

"20

⌘
= O

✓
d

�2"2
log

1

�0

◆
.

Choosing �0 := �/M and applying a union bound across all M observables yields
simultaneous accuracy | bEa � hEai� |  �" for every a 2 [M ] with probability at
least 1 � �, and the stated copy complexity O

�
d

�2"2 log M
�

�
follows.

For the time complexity, note that each copy used in a given color round requires
at most N single-qubit Pauli measurements (one per qubit), and there are (d +
1) O(log(1/�0)/"20) such copies overall. This gives time

O

✓
N

d

�2"2
log

M

�

◆
,

as claimed. ⇤

This lemma tells us that we can set | bEa � hEai� |  O(�") for all a. With this in
mind, we have the following.

Lemma 144. Assume the high-temperature condition (51). Let ⌧ be as in (48) and
set r := �⌧ . Suppose the empirical means obey

�� bEa � hEai�

��  �" for all a 2 [M ].
If the truncation order mmax in (50) satisfies

(2r)mmax+1  �"

4 e2 d (d + 1)
, (52)
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then kF(�)k1  2�". Equivalently, it su�ces to take

mmax �

2

66666

log

✓
4 e2 d (d + 1)

�"

◆

log

✓
1

2�⌧

◆

3

77777
� 1 . (53)

In particular, for constant d we have mmax = O
�
log(1/(�"))

�
.

Proof. By the definition (50) and the triangle inequality,
��Fa(�)

�� 
�� bEa � hEai�

��+
X

m>mmax

�m
��p(a)m (�)

��  �" +
X

m>mmax

�m cm .

Thus, with r = �⌧ ,
X

m>mmax

�m cm = 2e2 d(d + 1)
X

m>mmax

(m + 1) r m.

For m � 1 we may use (m + 1)  2m, where (since 2r < 1)

X

m>mmax

(m + 1) rm 
X

m>mmax

(2r)m =
(2r)mmax+1

1 � 2r
.

The high-temperature hypothesis (51) implies r ⌧ 1 (and hence 2r < 1); in partic-
ular, 1/(1 � 2r)  2. Therefore

X

m>mmax

�m cm  4e2 d(d + 1) (2r)mmax+1.

Imposing (52) makes the right-hand side at most �", and hence
��Fa(�)

��  2�" for
all a. Taking the maximum over a yields kF(�)k1  2�".

Finally, solving (52) for mmax gives (53); since 2�⌧ < 1 under (51), the denomi-
nator is a positive constant when d is constant, proving the claimed O(log(1/(�")))
scaling. ⇤

Finally, we show that we can e�ciently find an x such that kx � �k1  18 ".

Theorem 145 (High-temperature learning via projected Newton-Raphson). As-
sume the high-temperature condition (51). Suppose we are given estimates { bEa}a2[M ]

of the thermal expectations hEai� obeying
�� bEa � hEai�

��  � " for all a 2 [M ].
Moreover let us take "  1

12 . Then there is a classical algorithm (a projected
Newton-Raphson scheme with a truncated Neumann-series inverse) that outputs
x 2 [�1, 1]M such that kx � �k1  18 " in time O(ML

" poly(d, log 1
�" )), where L is

the maximum number of qubits on which any Hamiltonian term acts.

Proof Sketch. Let us choose the judicious bound

mmax �

2

666
e

e � 1

1

log
⇣

1
�⌧

⌘ log

0

@12e2(d + 1)2

�" log
⇣

1
�⌧

⌘

1

A

3

777

which is compatible with our previous one. The Newton-Raphson method
ordinarily entails an iteration like x(t+1) = x(t) � (J�1F)(x(t)), although to avoid
computing the inverse of J we will instead consider an approximation J(x)�1 ⇡
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��1
PK�1

k=0 (1+��1J(x))k for a su�ciently large K that we will specify. Specifically,
we consider the iteration

x(0) = ~0 , x(t+1) = Proj[�1,1]M

"
x(t) + ��1

KX

k=1

(1+ ��1J(x(t)))kF(x(t))

#

where we have used

Proj(u) :=

8
><

>:

1 if u 2 (1, 1)

u if u 2 [�1, 1]

�1 if u 2 (�1, 1)

,

and take K = dlog2
�

3
2"

�
e.

Before analyzing the convergence of the iterations, let us examine the error e(t)

between J(x(t))�1F(x(t)) and ��1
PK�1

k=0 (1+��1J(x(t)))kF(x(t)). Specifically, we
have

e(t) :=

 
�J(x(t))�1 +

1

�

K�1X

k=0

(1+ ��1J(x(t)))k

!
F(x(t))

= � 1

�

1X

k=K

(1+ ��1J(x(t))kF(x(t))

= J�1(x(t))(1+ ��1J(x(t)))KF(x(t)) ,

which by Lemma 141 decays exponentially in K in the k · k1 norm. This will be
useful for us shortly.

With the error e(t) under control, let us examine the convergence of x(t) under
our Newton-Raphson iteration. Let Fa(s) : [0, 1] ! R by defined by Fa(s) :=
Fa(x + s(� � x)). By Taylor’s remainder theorem, there exists an s0 2 [0, 1] such
that

Fa(1)| {z }
=Fa(�)

= Fa(0)| {z }
=Fa(x)

+(@sFa)(0) +
1

2
(@2

sFa)(s0) .

Using @s =
P

b(�b � xb)@b and setting y(a) := s0� + (1 � s0)x, we find

Fa(�) = Fa(x) +
X

b

(�b � xb) (@bFa)(x)| {z }
= Jab(x)

+
1

2

X

b,c

(�b � xb)(�c � xc)(@b@cFa)(y(a)) .
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Letting �(t) := x(t) �� (and similarly �(t+1) := x(t+1) ��) where �(t)
d denotes the

dth coordinate, we have the following:

|�(t+1)
d | =

���Proj[�1,1][(x � (J�1F)(x) + e)d] � �d

���


��(x � (J�1F)(x) + e)d � �d

��

=

�����e
(t)
d + �(t)

d �
X

a

(J(x(t))�1)daFa(x(t))

�����

=

�����e
(t)
d + �(t)

d �
X

a

J(x(t))�1
da

 
Fa(�) �

X

b

(�b � x(t)
b )Jab(x

(t))

� 1

2

X

b,c

(�b � x(t)
b )(�c � x(t)

c )[@b@cFa](y(a))

!�����

=

�����

h
e(t) + �(t) � J(x(t))�1F(�) � J(x(t))�1J(x(t))�(t)

i

d

+
1

2

X

a,b,c

J(x(t))�1
da �(t)

b �(t)
c [@b@cF ](y(a))

�����

=

�����

h
J(x(t))�1

⇣
(1+ ��1J(x(t)))KF(x(t)) � F(�)

⌘i

d

+
1

2

X

a,b,c

J(x(t))�1
da �(t)

b �(t)
c [@b@cFa](y(a))

����� .(54)

We will bound each term in the last equation in turn. For the first part, we have

�����

h
J(x(t))�1

⇣
(1+ ��1J(x(t)))KF(x(t)) � F(�)

⌘i

d

�����

 kJ(x(t))�1k1!1

⇣
k1+ ��1J(x(t))kK

1!1kF(x(t))k1 + kF(�)k1
⌘

 2��1
�
2�K(2 + �") + 2�"

�
 6" . (55)

In going to the last line we have used Lemma 141 and Lemma 144, in conjunction
with

|Fa(x)| 

�����
bEa +

mmaxX

k=1

�k|p(a)k (x)|

�����

 | bEa � hEai� | +

������hEai� +
mmaxX

k=1

�k|p(a)k (x)|

�����

 �" + 2 .
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For the last term in (54), we have for all indices d the inequalities
������
1

2

X

a,b,c

J(x(t))�1
da �(t)

b �(t)
c [@b@cF ](y(a))

������

 1

2
kJ(x(t))�1k1!1 max

a

������

X

b,c

�(t)
b �(t)

c [@b@cFa](y(a))

������

 1

�
max

a

1X

k=0

X

b,c

|�(t)
b �(t)

c | �k |@b@cp
(a)
k (y)|

 1

�

1X

k=0

X

b,c :
distG(b,a)k
distG(c,a)k

k�(t)k21 �kk(k � 1)ck

 1

�

1X

k=0

(d + 1)2kk�(t)k21 �kk(k � 1)ck

=
12e2

�
k�(t)k21(d + 1)2

(�(d + 1)2⌧)2

(1 � �(d + 1)2⌧)4

 25

2
e2�(d + 1)6⌧2k�(t)k21 , (56)

where in going to the second-to-last line we have used that �(d + 1)2⌧ < 1 and in

going to the last line we have used that �d2⌧  1 �
�
24
25

�1/4
. Putting together (55)

and (56) we find

k�(t+1)k1  6" +
25

2
e2�(d + 1)6⌧2k�(t)k21 .

By solving the recursion, one can show that so long as k�(0)k1  1
25e2�(d+1)6⌧2  1,

we achieve kx(T ) � �k1  18" for

T = d� log2(300e6(d + 1)10�")e .

Finally, let us sketch the runtime bound. For each a 2 [M ], the truncated

series Fa(x) =
Pm

k=0 �kp(a)k (x) � bEa is a degree-m polynomial whose support is
contained in the radius-k neighborhoods of a in G; the number of contributing
terms at order k is at most poly(d) (d+1)k and each coe�cient can be evaluated in
time O(L poly(k)). Hence, evaluating all M coordinates of F (x) and forming (or
applying) the nonzeros of the sparse Jacobian J(x) at a given point x costs

O
⇣
M L poly(d)

mX

k=0

(d + 1)k
⌘

= O
�
M L poly(d) (d + 1)O(m)

�
.

One Newton step uses the truncated Neumann-series inverse ��1
PK�1

k=0

�
1+��1J(x)

�k
,

which requires K sparse matrix–vector multiplies with J(x), and thus has cost
O
�
K M L poly(d) (d + 1)O(m)

�
at iteration x = x(t). The projection Proj[�1,1]M

adds only O(M) time. With T Newton iterations in total, the overall runtime is

O
⇣
(K + 1) TM L poly(d) (d + 1)O(m)

⌘
.
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Substituting in our parameter choices yields the stated time complexity:

O

✓
M L

"
poly

⇣
d, log

1

�"

⌘◆
.

⇤
To summarize, we have succeeded in establishing that, for suitable �, d, and

mmax, we have kx��k1  O("). Below we will put together all of our results thus
far to get the final, overarching algorithm and associated bounds.

3.3. Putting the bounds together

We can combine all of the results above to get the main result of [HKT22].
We recapitulate some of the notation we have collected along the way.

Theorem 146 (Learning from high-temperature Gibbs states). Let H =
P

a2[M ] �aEa

be a low-intersection Hamiltonian on N qubits: each non-identity Pauli term Ea

acts on at most L = O(1) qubits and the dual interaction graph has maximum
degree d = O(1). Fix inverse temperature � > 0 obeying the high-temperature con-
dition (51) (equivalently � < �c(d) for a universal constant �c > 0 depending only
on d), and let ⇢� = e��H/tr(e��H).

For any " 2 (0, 1
12 ) and failure probability � 2 (0, 1), there is a classical algo-

rithm which, given independent copies of ⇢�, outputs b� 2 [�1, 1]M satisfying

kb� � �k1  18"

with probability at least 1 � �, using

S1 = O

✓
d

�2"2
log

M

�

◆

copies of ⇢�. In particular, when d = O(1) and M = ⇥(N), this is

S1 = O

✓
log N

�2"2

◆
.

Consequently, to achieve `2-error kb� � �k2  " it su�ces to use

S2 = O

✓
M

�2"2
log

M

�

◆
= O

✓
N

�2"2
log

N

�

◆
.

The total running time is linear in the sample size (i.e. O(SN) where S is the
number of copies used), up to polylogarithmic factors in 1/(�").

Proof. Assume (51) and let ⌧ be as in (48). We can estimate all thermal expecta-
tions in parallel (via Lemma 143) to obtain { bEa}a2[M ] with | bEa � hEai� |  �" for

every a using S1 = O
�

d

�2"2 log M
�

�
copies of ⇢� , with success probability � 1 � �.

Define F as in (50) and choose the truncation order mmax as in (53). Then
Lemma 144 gives kF(�)k1  2�". By the high-temperature conditioning in
Lemma 141, we have

k1+ ��1J(x)k1!1  1
2 and kJ(x)�1k1!1  2��1 , for all x 2 [�1, 1]M .

We run the projected Newton–Raphson update with truncated Neumann in-
verse in Theorem 145 from x(0) = ~0 and with K =

⌃
log2

�
3
2"

�⌥
. The one-step anal-

ysis yields the recursion k�(t+1)k1  6" + C � k�(t)k21 with C = 25
2 e2(d + 1)6⌧2.
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Solving this recursion with T =
⌃
�log2

�
300e6(d+1)10�"

�⌥
gives kx(T )��k1  18".

We set b� := x(T ) to obtain the claimed accuracy with probability � 1 � �.
The sample bound is exactly that of Lemma 143, and for d = O(1) and

M = ⇥(N) it simplifies to S1 = O
� log N

�2"2

�
. The `2 statement follows by tar-

geting kb���k1  "/
p

M , which replaces " by "/
p

M in Lemma 143, yielding S2 =
O
�

M
�2"2 log M

�

�
. The runtime is O(S1N) for data collection plus O

�
ML

" poly(d, log 1
�" )
�

for classical postprocessing, which is linear in the sample size up to polylogarithmic
factors in 1/(�"). ⇤


