CHAPTER 9

Learning Gibbs States: Low Temperature

In the previous chapter, we saw an algorithm for learning Gibbs states at tem-
peratures above some absolute constant depending on the geometry of the Hamil-
tonian. Although the algorithm we considered breaks down at lower temperatures,
there is no a priori reason why there shouldn’t exist any algorithm that succeeds in
that regime. Indeed, one can show that at least information-theoretically, one can
learn at arbitrary temperatures with sample complexity scaling exponentially in 3
and inversely in poly(8) [AAKS21]. For a while, it was an open question whether
one could achieve this rate with a computationally efficient algorithm. This was
resolved in a recent breakthrough of [BLIMT24] which gave an algorithm with run-
time and sample complexity poly(m, (1/ G)Zﬁ ), where m is the number of terms in the
Hamiltonian; this doubly exponential dependence on 3 was subsequently improved
to singly exponential dependence by [Nar24]. These papers rely on a powerful
algorithmic framework called sum-of-squares programming; unfortunately, a com-
plete exposition of this approach would take us too far afield, and instead we will
consider a different algorithm due to the very recent work of [CAN25]. This last
paper gave an alternative algorithm with better dependence on the system size,
and using an arguably more intuitive approach.

1. Technical Preliminaries

Throughout, fix a Hamiltonian
H=3 AuPo=) lly,
a n

where 7 ranges over the distinct eigenvalues (“energies”) of H, and II,, = |n) (n|n
denotes projection to the eigenspace corresponding to eigenvalue 7. Throughout,
p o< e PH will denote its Gibbs state.

Any such Gibbs state naturally induces the following inner product which gen-
eralizes the classical Lo inner product with respect to a probability measure:

Definition 147 (KMS inner product). Given operators A, B and a density matric
p, their KMS inner product is given by

(A, B), = tr(Ap'/2BTp!/?).
This induces the KMS norm || A|2 £ (A, B),.
We will often be interested in differences between energies n — n':

Definition 148 (Bohr frequencies and Bohr decomposition). The set of Bohr
frequencies, denoted B(H), of a Hamiltonian H consist of all differences n —n/
between eigenvalues of H. We will always use the letter v, possibly with superscripts,
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152 9. LEARNING GIBBS STATES: LOW TEMPERATURE

to denote Bohr frequencies, and ), to denote ZVEB(H) when H is clear from
context.

Any operator A can naturally be decomposed into blocks 1L, AllL, corresponding
to different pairs of eigenspaces, and the Bohr frequencies give a natural set of
“bands” for grouping together these blocks. Given operator A and Bohr frequency
v, define

A,= > T,AL,.
n'—n=v
Counterintuitively, the algorithm we will describe for learning Gibbs states, which
are inherently static objects, will arise from reasoning about dynamics associated
to the Hamiltonian. These were introduced briefly in Section 3. We will discuss
their relevance to the learning algorithm and analysis in Section 2, but for now we
simply recall their definition:

Definition 149 (Time evolution). Given a time t € R and a Hermitian H, the
associated time evolution operator is e "Ht.\ Under the Schrodinger picture, a

state po undergoing time evolution becomes py = e~ "t poettt at time t. Dually, one

can consider the time evolution of observables. Under the Heisenberg picture,
an observable Ay undergoing time evolution becomes A, = et Age ™t at time t.
We will adopt some shorthand for the latter: given an operator A, define

Ap(t) 2 et e

While time evolution is defined with t € R (indeed, this is essential for e'Ht to
be unitary), we can also consider conjugating operators by the Gibbs state instead
of by et which would correspond to imaginary t, to get

e PH gePH
We will refer to this as imaginary time evolution and occasionally abuse nota-
tion by writing this as Ag(if).

The Bohr decomposition behaves nicely under time evolution and imaginary time
evolution:

Lemma 150. For any t € C,

Ap(t) =Y _€e"'A,.
v
PRrROOF. By definition e’ft = > ™11, has the same eigenvectors as H, so IT,e "t

e~ "ML, and T,y et = ¢'t. Therefore, for any 7,7’ for which 7/ — 1 = v, we have
ethHn/AHnefth — eiytHn/AHn,

from which the claim follows by linearity. (]

1Here we have flipped the sign from what was defined in Section 3 as it is more convenient
for some of the subsequent calculations.
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2. Learning by Exploiting Detailed Balance

The starting point for the proof is the Kubo-Martin-Schwinger (KMS)
condition, which can be thought of as a quantum analogue of detailed balance.

Theorem 151 (KMS condition). Let p' = e~ #H' /tr(e=PH") for some Hamiltonian
H'. The equation

(o At (£)0) = tr(/ O A (¢ + iB)) (57)
holds for all operators O and A and all times t € C? if and only if H = H + cId
for some absolute constant ¢ € R.

While this statement is incredibly powerful, as we will see, its proof is rather trivial.

PROOF. One can readily verify that for p = e #H /tr(e=PH),
1 ) ) ,
tr(pAp(t)0) = Etr(e’H““ﬁ)AeﬂHto)

_ ltr(eiH(t+i,8)Ae*iH(tJriﬁ)efBHO)

= tr(Anu(t +1iB8)p0)
=tr(pOAg(t+ip)).

To show the converse, note that Eq. (57) holding for all O, A, t is equivalent to the
condition that

p'An(t) = Au(t+iB)p" = pAu(t)p™'p/
for all A,¢. This in particular implies that A = (p~!p') "t A(p~1p’) for all A, which
implies that the mixed states p and p’ are equal, as desired. O

In other words, the only state that satisfies the KMS condition with respect to H is
the Gibbs state. The rest of this section is about making this insight quantitative
in order to extract out a learning algorithm. This requires answering two questions.
First, if p’ o< e PH g close, in an appropriate sense, to satisfying the KMS con-
dition, does that imply H’ is close to H? Second, how does one computationally
efficiently find an H’ for which this is the case?

2.1. A KMS alternative that sees locality

The above argument that the only state that satisfies the KMS condition with
respect to H is the Gibbs state is unfortunately rather global in nature as it involves
multiplying by inverses of matrix exponentials. This is a horribly ill-conditioned
operation as many of the eigenvalues of p are exponentially small. In this section,
we will outline an approach to making this argument more “local” by carefully
designing O and A.

First, let us slightly shift perspectives by switching the roles of H, p and H', p’
in Theorem 151. For convenience, let us also replace ¢t by ¢t — /2 just so that
instead of (t,t + i8), we get (¢t —i5/2,t 4+ i8/2). This gives rise to the following
equivalent formulation of the KMS condition:

2The KMS condition was originally devised as an alternative characterization of Gibbs states
that can extend to infinite dimensions; in those contexts one has to be a bit careful about issues
of analyticity and ¢ is taken to be real, but in finite dimensions this is not an issue.
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Theorem 152 (Dual KMS). Given a Hamiltonian H’, operators O and A, and
time t € C, define the observable

measuring the extent to which some equation in the KMS condition s violated.
Then

tr(pA[H'; 0, A, t]) =0
for all O, A,t if and only if H = H' + cId for some absolute constant c.

If we had some way of enumerating over all H', O, A,t, then we might imagine
using our copies of the Gibbs state p to estimate all of these observable values and
hope that if we have found some H’ for which the corresponding observable values
tr(pA%r.0.4,,) Were all very small, then H' ~ H.

Thus far, we haven’t done anything new on top of Theorem 151, but we are
now in a position to try making things more local. The first key insight towards
doing so is to realize that there is a certain weighted combination of the observables
A[H'; 0, A, t]’s for local operators O and A which is small if and only if H and H’
are close (up to additive shift).

Theorem 153 (Identifiability equation). For any operators O and A, we have

(014 H — H'), = t(pA[H';0, A])

for
AT - _ 1L - 1. Ot
A[H";0,A] = m/_OOA[[H,OH(t),AJ]]gg(t)dt

where ga(t) = %g(2t/ﬁ) for

3/2

2v/2(1 + cosh(nt))

(see Figure 1 for a plot — the particular functional form is not important, but the
fact that it is rapidly decaying is).

g(t) & -

We will prove this in Section 2.2. Although this result is stated in terms of general
operators O and A, the following result morally tells us that it suffices to consider 1-
local Paulis A and O = [A, H — H'| and motivates why we consider (O, [A, H—H']),
in the first place:

Lemma 154. Suppose H = Y AP, and H =) A, E, are Hamiltonians with
the same set of couplings. If 2%H[A,H — H'|||% < €% for all three Pauli operators
A e {X;,Y;, Z;} acting solely on the i-th qubit, then |\, — N,| < € for every term
P, acting on qubit i.

ProoF. For any A, we have
1 1
S lAH = H')| = (AL [A H — H)(H — HY)).

If Ae{X,,Y;,Z;} and P is some Pauli operator, then [A, P] =0 if P acts as A or
Id on the i-th qubit, and otherwise [A, P] is the operator which is identical to P
off of the i-th qubit and equal to some signed Pauli on the i-th qubit. Moreover, in
this case [A, [A, P]] = 4P.
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We conclude that 3 4o, vi 7,3 [A, [4, H — H']] = 8%, ;(Aa — Ag) Pu, Where
the sum is over terms a which act on 4, and thus

1
2 / ! _ /1\2
3e > 27 Z tr([A7 [AaH_HH(H_H))_sz()‘a_)‘a) ’
Ae{X,;,Y;,Z;} a~i
from which the claim follows. O

Remark 155. There is a slight but nontrivial catch that Lemma 15/ pertains to
the Frobenius norm of [A, H — H'], whereas Theorem 153 involves the KMS norm.
For local operators like [A, H— H'], these can be related up to a ePlY(B) factor using
ideas from Section 3 below. Proving this would take us too far afield, and we defer
the interested reader to [CAN25, Lemma I11.6].

Modulo this remark, combining Theorem 153 and Lemma 154, we conclude that
if H' was such that tr(pA[H’; O, A]) was small for all 1-local Paulis A and O =
[A, H— H'], then this would ensure that H and H' are equivalent. As we saw in the
proof of Lemma 154, [A, H— H'] only consists of terms a which act on the i-th qubit,
and for local Hamiltonians this is a constant number of terms. Furthermore, the
operator OL(t) that appears in the definition of A[H’; O, A] is also approximately
local, because intuitively the locality of H ensures that the time-evolved operator
OL (t) doesn’t “spread out” too much in a short amount of time - this is the content
of Lieb-Robinson bounds, which we discuss in Section 4.

There are however two important challenges remaining to “localizing” the KMS
condition into something that can be algorithmically useful. First, the observables
A[H’; O, A] require knowledge of H, at the very least in order to write down
OL (t). Second, recall from the definition of A in Eq. (58) that they still involve
the scary-looking imaginary-time-evolved operators Ag/(t +4(3/2). Imaginary time
evolution involves conjugating by a fractional power of e=#H ", which again might
have exponentially small eigenvalues. So it would appear that we still haven’t
sidestepped the need to invert by ill-conditioned matrices.

The former issue is not so bad: even without knowing H, we can simply enu-
merate over guesses of the Hamiltonian in a way that we make precise in Section 4.
The latter is the more fundamental issue, and we deal with this in Section 3 using
a subtle regularization trick from the literature on quantum Gibbs sampling.

2.2. Proof of identifiability equation

In this section we prove Theorem 153. The key technical tools will be a nested
Bohr decomposition with respect to the Bohr frequencies of H and H’'.

Given Hamiltonians H; and Hy with Bohr frequencies B(H;) = {v1} and
B(Hs) = {2} and an operator A, we will use the following “double” decomposition:

(Av)w = Y. > Ty TLy, AL, I1, .

Ny—N2=ve N —N1=V1

Here n1,n) (resp. m2,7n5) denote eigenvalues of H; (resp. 72), and the II’s are
projectors to the corresponding eigenspaces.

This double decomposition gives us a way to analyze objects like the commu-
tator on the left-hand side of the identifiability equation.
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Lemma 156 (Calculations with double decomposition). The following identities
hold:

[AaHQ _Hl} = - Z(AVI)V2(V2 _l/l)'

vi,V2

ef2e=Hi peHro=Hz2 _ o=H2H1 po=HipH2 g (Ay, ), - 2sinh(vg — 1) .

Vi,V2
PROOF. We have
[A, Hy] = AH, — H1A

- Z Z 1L, AL, H, — Hy 11, ATL,

vi n'—n=u

> > (—n), AT,

vi n'—n=v1

- E VIAV17
Vi

and similarly for [A, Hz]. So the first part follows.
For the second part,

e_HlAeHl — Z Z e_(ni_'fll)HniAHnl — Ze—MAVl ,

/ _
Vi omy—m=uv1

and similarly
ef2 A, e~ H2 = Z e”?(Au )y s

Vo
SO
6H267H1A6H167H2 — Z eV (Ayl)y2
vy,v2
and similarly
e H2pt go—HipH2 — Z e T2 (AL ), -
vi,V2

Note that e”27"* — ¢"17¥2 = 2sinh(vy — 1), so the second part follows. O

As sinh is a bijective function, the above lemma gives a crucial link between commu-
tator differences and interleaved imaginary time evolution differences, formalized
as follows:

Lemma 157 (Commutator difference in time domain).

[Aa H2 - Hl] =
1 oo
\/7/ [eHQe”qlAH1 (t)eHre=Hz — =H2eH g (t)eiHleHQ}H (—t)-g(t)dt
™ J—c0o 2
for
oy w
gl 2sinh|w]
and
1 oo _ 73/2
t) = — glwle™ ™ dt = — .
90 = /o /,oogMe 2v/2(1 + cosh(xt))
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PROOF. We have

[A, Hy — Hi] = = > (A, )iy (2 —11)
Vi,V
= g(yz — 1/1) (Ayl)y2 QSlnh( 2 — 1/1)
Vi,V
1 /m —_a — t .
==Y | e TIAL),, - 2sinh(vy - vy) dt
Var A~
*“’ﬁ A, e“’lt - 2sinh(vy — 1) dt.
wﬁ;/ (1) o - 2sinh(vy — 1) dt

where in the third step we used Fourier inversion. Using Lemma 150 and Lemma 156,
the claimed identity follows. O

Note that the function g(t) is rapidly decaying, see Figure 1 below.

FIGURE 1. Plot of g(t) from Theorem 153

We can now complete the proof of the identifiability equation.

PROOF OF THEOREM 153. Let p and p’ denote the Gibbs states for H and H'.
Taking Hy = SH'/2 and Hy = SH/2 in Lemma 157, consider the first term in
the integral. Using that time evolution via H commutes with left- and right-
multiplication by ,/p, we find that the first term equals

tr(v/pO' /o[ p fAﬂH’/Q VP plgry2(—t
= tr OT \/>ABH//2 \/ _lp ﬂH/Q(_t
= tr(Of 1 o(1) - Vo' Agnr ;2 (V' ~1p)
—tr(OT (tB/2) - /P Am/ (t8/2)\/ '~ 1p)

where in the penultimate step we pushed the reverse time evolution onto Of. Sim-

ilarly
tr(y/pOT/p \/ﬁAﬁH’/Z )\/H\/F]BH/Q(_U)
=tr OJf p\/TlAﬂH’/Q \/7]ﬁH/2(_ )
= tr( BH/2 P\/ﬁAﬁH//Q \Vp')
= tx(O};(t8/2) - p/p/ " Aw (tB/2)\/ 1) -
We conclude that

SO ~ 1Y), = o [ oAl OL 18/, 4,05/2]) v
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The identifiability equation follows by a change of variable t — 2¢//. O

3. Regularization
3.1. Preliminaries

Definition 158 (Operator Fourier transform). Given a Hamiltonian H and an
operator A, define the operator Fourier transform (FT) Ay by

Aull = <= [~ w0,

where f(t) = e_"ztz\/m/2/7r is a Gaussian filter. The “regularizing” role of f(t)
will be become clearer in the sequel. Its Fourier transform f[w] = \/% ffooo e WhF(t) dt

satisfies flw] = ——— exp(—w?/402).
fies flw] Vovar p( / )
Note that the operator F'T commutes with imaginary time evolution:

PH Aylwle PH = (BT Ae—BH) ]
Taking the operator FT of both sides of Lemma 150 results in the following useful
identity:
Aglw] = ZAl,f[w —v].

In other words, the operator FT gives “soft” access to the components in the
Bohr decomposition of A. We have a corresponding “soft” Bohr decomposition, by
Fourier duality.

Lemma 159. For any operator A and Hermitian H,
A= C(,/ Aplw] dw

o 1
for C, = ——

Importantly, a straightforward calculation shows that the Gaussian filter ensures
the operator FT decays exponentially in the frequency w:

Lemma 160. For any frequency w and operator A satisfying ||Allop < 1,
Aplw] = 675“%”%265}1/@1{[(‘) —202p]e PH

To see why this is useful, note that because || Ag[w]|lop < £(0) = O(c~1/?), this en-
sures that || Ay [w/)e PH||op < €7 B+ 6=1/2 Crucially, the right-hand scales
exponentially in the frequency w’, rather than exponentially in the system size! In
contrast, norm of the imaginary time-evolved observable ||eH Ae=PH ||, can scale
exponentially in the system size.

3.2. Truncating the identifiability observable

Using Lemma 159, we can decompose A in (O, [A, H— H']), into low-frequency
and high-frequency terms under operator FT with respect to H' and apply the



