The identifiability equation follows by a change of variable $t \mapsto 2t/\beta$.

3. Regularization

3.1. Preliminaries

Definition 158 (Operator Fourier transform). Given a Hamiltonian H and an operator A, define the **operator Fourier transform** (FT) \hat{A}_H by

$$\hat{A}_H[\omega] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A_H(t) e^{-i\omega t} f(t) dt,$$

where $f(t) = e^{-\sigma^2 t^2} \sqrt{\sigma \sqrt{2/\pi}}$ is a Gaussian filter. The "regularizing" role of f(t) will be become clearer in the sequel. Its Fourier transform $\hat{f}[\omega] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt$ satisfies $\hat{f}[\omega] = \frac{1}{\sqrt{\sigma\sqrt{2\pi}}} \exp(-\omega^2/4\sigma^2)$.

Note that the operator FT commutes with imaginary time evolution:

$$e^{\beta H} \hat{A}_H[\omega] e^{-\beta H} = (e^{\beta \widehat{H}} \widehat{A} e^{-\beta H})_H[\omega]$$

Taking the operator FT of both sides of Lemma 150 results in the following useful identity:

$$\hat{A}_H[\omega] = \sum_{\nu} A_{\nu} \hat{f}[\omega - \nu].$$

In other words, the operator FT gives "soft" access to the components in the Bohr decomposition of A. We have a corresponding "soft" Bohr decomposition, by Fourier duality.

Lemma 159. For any operator A and Hermitian H,

$$A = C_{\sigma} \int_{-\infty}^{\infty} \hat{A}_{H}[\omega] \, \mathrm{d}\omega$$

for
$$C_{\sigma} := \frac{1}{\sqrt{2\sigma\sqrt{2\pi}}}$$
.

Importantly, a straightforward calculation shows that the Gaussian filter ensures the operator FT decays exponentially in the frequency ω :

Lemma 160. For any frequency ω and operator A satisfying $||A||_{op} \leq 1$,

$$\hat{A}_{H}[\omega] = e^{-\beta\omega + \sigma^{2}\beta^{2}} e^{\beta H} \hat{A}_{H}[\omega - 2\sigma^{2}\beta] e^{-\beta H}$$

To see why this is useful, note that because $\|\hat{A}_H[\omega]\|_{op} \leq \hat{f}(0) = O(\sigma^{-1/2})$, this ensures that $\|e^{\beta H}\hat{A}_H[\omega']e^{-\beta H}\|_{op} \lesssim e^{\sigma^2\beta^2+\beta\omega'}\sigma^{-1/2}$. Crucially, the right-hand scales exponentially in the frequency ω' , rather than exponentially in the system size! In contrast, norm of the imaginary time-evolved observable $\|e^{\beta H}Ae^{-\beta H}\|_{op}$ can scale exponentially in the system size.

3.2. Truncating the identifiability observable

Using Lemma 159, we can decompose A in $\langle O, [A, H-H'] \rangle_{\rho}$ into low-frequency and high-frequency terms under operator FT with respect to H' and apply the

identifiability equation in Theorem 153 to obtain

$$\begin{split} \frac{\beta}{2C_{\sigma}}\langle O, [A, H - H'] \rangle_{\rho} &= \\ \int_{|\omega'| \leq \Omega'} \operatorname{tr}(\rho \overline{\Delta} \llbracket H'; O, \hat{A}_{H'}[\omega'] \rrbracket) \, \mathrm{d}\omega' + \frac{\beta}{2} \int_{|\omega'| \geq \Omega'} \langle O, [\hat{A}_{H'}[\omega'], H - H'] \rangle_{\rho} \, \mathrm{d}\omega' \,. \end{split}$$

Let us try to write down a slightly more palatable expression for the first integral that doesn't involve the operator FT. Note that

$$\hat{A}_{H'}[\omega']_{H'}(t-i\beta/2) = (\sqrt{\rho'}\hat{A}_{H'}[\omega']\sqrt{\rho'^{-1}})_{H'}(t),$$

and

$$\int_{|\omega'| \leq \Omega'} \sqrt{\rho'} \hat{A}_{H'}[\omega'] \sqrt{\rho'^{-1}} d\omega'$$

$$= \int_{|\omega'| \leq \Omega'} \hat{A}_{H'}[\omega' - \sigma^2 \beta] e^{-\beta \omega'/2 + \sigma^2 \beta^2/4} d\omega'$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A_{H'}(t') \underbrace{\int_{|\omega'| \leq \Omega'} e^{-i(\omega' - \sigma^2 \beta)t'} e^{-\beta \omega'/2 + \sigma^2 \beta^2/4} d\omega' f(t')}_{h_{+}(t')} dt',$$

where in the first step we used Lemma 160, and similarly

$$\int_{|\omega'| \leq \Omega'} \sqrt{\rho'^{-1}} \hat{A}_{H'}[\omega'] \sqrt{\rho'} d\omega'$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A_{H'}(t') \underbrace{\int_{|\omega'| \leq \Omega'} e^{-i(\omega' + \sigma^2 \beta)t'} e^{\beta \omega'/2 + \sigma^2 \beta^2/4} D\omega' f(t')}_{h_{-}(t')} dt'.$$

Observe that

$$|h_+(t)|, |h_-(t)| \le O\left(\frac{\sqrt{\sigma}}{\beta}e^{-\sigma^2t^2 + \beta\Omega'/2 + \sigma^2\beta^2/4}\right),$$

i.e. these functions are rapidly decaying in t.

Summarizing, we have the following:

Lemma 161. Let $\Omega' > 0$ and define the truncated observable

$$\overline{\Delta}^{\leq \Omega'} \llbracket H'; O, A \rrbracket
:= \frac{1}{\sqrt{2\pi}} \iint_{-\infty}^{\infty} \left(h_{+}(t') O_{H}^{\dagger}(t) A_{H'}(t'+t) - h_{-}(t') A_{H'}(t'+t) O_{H}^{\dagger}(t) \right) g_{\beta}(t) \, \mathrm{d}t' \, \mathrm{d}t \, .$$
(59)

Then

$$\frac{\beta}{2C_\sigma}\langle O, [A,H-H']\rangle_\rho = \operatorname{tr}(\rho\overline{\Delta}^{\leq \Omega'}[\![H';O,A]\!]) + \frac{\beta}{2}\int_{|\omega'| \geq \Omega'}\langle O, [\hat{A}_{H'}[\omega'],H-H']\rangle_\rho \,\mathrm{d}\omega'\,.$$

Let's take stock of what this buys us. First, because g_{β} , h_{+} , and h_{-} are rapidly decaying, the bulk of the double integral in the truncated observable $\overline{\Delta}^{\leq \Omega'}[H'; O, A]$ is coming from short-time evolutions of O and A, which are local by the aforementioned Lieb-Robinson bounds. In short, if we only look at the "low-degree" term

in Lemma 161, we now have an observable which is entirely local which captures the discrepancy between H and H'.

It still remains to control the truncation error term $\int_{|\omega'| \geq \Omega'}$. For this, we can use Lemma 160 in conjunction with locality of H - H' and A to show that for $\Omega' \geq \Omega(\sigma^2/\mathfrak{d})$, where \mathfrak{d} is the degree of the dual interaction graph, the truncation error is negligible. We defer the details to [CAN25, Lemma III.5].

As discussed above, there is still one important missing piece before we can turn the above into a learning algorithm. The issue is that the truncated observable in Eq. (59) ultimately still depends on H through $O_H^{\dagger}(t)$. We explain the workaround for this next.

4. Learning Algorithm

In this section we describe how to exploit the ingredients from the preceding sections, deferring a complete proof of correctness to [CAN25].

To sidestep the issue that the truncated observable defined in Eq. (59) depends on H, we first define a broader class of observables that contains this observable.

Definition 162 (General truncated observables). Fix $\Omega' > 0$. Given operators K, O, A, G, with K and G Hermitian, define

$$\Delta^* \llbracket G, K; O, A \rrbracket := \frac{1}{\sqrt{2\pi}} \iint_{-\infty}^{\infty} \left(h_+(t') O_G^{\dagger}(t) A_K(t'+t) - h_-(t') A_K(t'+t) O_G^{\dagger}(t) \right) g_{\beta}(t) \, \mathrm{d}t' \, \mathrm{d}t \,.$$
(60)

Note that $\Delta^* \llbracket H, H'; O, A \rrbracket = \overline{\Delta}^{\leq \Omega'} \llbracket H'; O, A \rrbracket$.

By design, we have the following:

Proposition 163. When K = H, then $\operatorname{tr}(\rho \Delta^* \llbracket G, K; O, A \rrbracket) = 0$ for all O, G, A.

PROOF. In the proof of Lemma 161, instead of passing to h_+, h_- , we can directly express the "low-degree" term $\operatorname{tr}(\rho \overline{\Delta}^{\operatorname{trunc}}(H'; O, A))$ as

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \operatorname{tr} \left[\rho \int_{|\omega'| \leq \Omega'} \left(O_H^{\dagger}(t) \hat{A}_{H'}[\omega']_{H'}(t+i\beta/2) - \hat{A}_{H'}[\omega']_{H'}(t-i\beta/2) O_H^{\dagger}(t) \right) d\omega' \right] dt.$$

In the definition of $\Delta^* \llbracket G, K; O, A \rrbracket$, H' and H above are replaced by K and G respectively, yielding

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \operatorname{tr} \left[\rho \int_{|\omega'| \leq \Omega'} \left(O_G^{\dagger}(t) \hat{A}_K[\omega']_K(t + i\beta/2) - \hat{A}_K[\omega']_K(t - i\beta/2) O_H^{\dagger}(t) \right) \mathrm{d}\omega' \right] \mathrm{d}t \,.$$

If K=H however, then mirroring the proof of the KMS condition, we have that $\operatorname{tr}(\rho O_G^{\dagger}(t)\hat{A}_H[\omega']_H(t+i\beta/2)) = \operatorname{tr}(\sqrt{\rho}\hat{A}_K[\omega']_H(t)\sqrt{\rho}) = \operatorname{tr}(\rho\hat{A}_H[\omega']_H(t-i\beta/2)O_H^{\dagger}(t))$.

so
$$\Delta^* \llbracket G, H; O, A \rrbracket = 0$$
 as claimed.

This suggests that we can simply brute-force enumerate over a net of different K's, and for each one we check whether $\operatorname{tr}(\rho\Delta^*\llbracket G,K;O,A\rrbracket)\approx 0$ for all 1-local Paulis A, and O,G in a suitable net. Previously we considered taking O=[A,H-H'], but given that this depends on H, we can instead use the fact that

$$\|[A, H - H']\|_{\rho}^{2} \le 2\mathfrak{d} \max_{a} |\langle [A, P_{a}], [A, H - H'] \rangle_{\rho}|$$
 (61)

to restrict to $O = [A, P_a]$ for all 1-local Paulis A and terms a in the support of the Hamiltonian.

The (regularized) identifiability equation in Lemma 161, combined with Lemma 154 and the inequality in Eq. (61), ensures that if $\operatorname{tr}(\rho\Delta^*\llbracket G,K;O,A\rrbracket)\approx 0$ for all 1-local $A,O=[A,P_a]$, and G in a suitable net, then $K\approx H$.

Only one step remains: how do we enumerate over G, K? Naively, if the Hamiltonian has m terms, this would require enumerating over a net over O(m)-dimensional parameter space and incurring a runtime scaling exponentially in O(m). Fortunately, there is a workaround that again exploits locality. The intuition is that in the definition of $\Delta^* \llbracket G, K; O, A \rrbracket$ in Eq. (60), if A is a 1-local Pauli acting on site i, then $A_K(t'+t)$ and $O_G^{\dagger}(t) = [A, P_a]_G^{\dagger}(t)$ are roughly supported on a small neighborhood around i (because t', t are not too large because of the exponential damping of g_{β}, h_+, h_-). Moreover, Lieb-Robinson bounds ensure that these operators do not change much when G and K are replaced by their truncations to a suitable neighborhood around the i-th site. Formally, we have the following estimate:

Lemma 164 (Lieb-Robinson bound). If Hamiltonian $H = \sum_a \lambda_a P_a$ with coefficients satisfying $|\lambda_a| \leq 1$ has interaction degree \mathfrak{d} , then for any operator A acting on subsystem $S \subseteq [n]$ and satisfying $||A||_{\mathsf{op}} \leq 1$, if H_ℓ is given by removing all terms from H at distance at least ℓ from S, then

$$\|A_{H_\ell}(t) - A_H(t)\|_{\mathrm{op}} \leq O\Big(|S| \cdot \frac{(2\mathfrak{d}|t|)^\ell}{\ell!}\Big)\,.$$

The proof of this will be the subject of one of the homework exercises. With this in hand, we essentially have a complete, albeit informal, description of the algorithm:

- For each qubit $i \in [n]$:
 - (1) Enumerate over a net of local Hamiltonians K_{ℓ} acting on the neighborhood $V(\ell, i)$ of radius ℓ around the *i*-th site
 - (2) For each such K_{ℓ} , use $O(\log n)$ copies of ρ to estimate the observable values $\operatorname{tr}(\rho\Delta^*[\![G_{\ell},K_{\ell};[A,P_a],A]\!])$ for all local Hamiltonians G_{ℓ} acting on $V(\ell,i)$ and all terms P_a and 1-local Paulis A.
 - (3) If for any such K_{ℓ} all of these observable values are small, then we will take our estimate of H over the local patch $V(\ell, i)$ to be K_{ℓ} .

The quantitative details are somewhat dense and do not provide much additional insight beyond the intuition outlined above, so we defer these to [CAN25].