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The identifiability equation follows by a change of variable t 7! 2t/�. ⇤

3. Regularization

3.1. Preliminaries

Definition 158 (Operator Fourier transform). Given a Hamiltonian H and an
operator A, define the operator Fourier transform (FT) ÂH by

ÂH [!] =
1p
2⇡

Z 1

�1
AH(t)e�i!tf(t) dt ,

where f(t) = e��2t2
q

�
p

2/⇡ is a Gaussian filter. The “regularizing” role of f(t)

will be become clearer in the sequel. Its Fourier transform f̂ [!] = 1p
2⇡

R1
�1 e�i!tf(t) dt

satisfies f̂ [!] = 1p
�
p
2⇡

exp(�!2/4�2).

Note that the operator FT commutes with imaginary time evolution:

e�HÂH [!]e��H = ( \e�HAe��H)H [!]

Taking the operator FT of both sides of Lemma 150 results in the following useful
identity:

ÂH [!] =
X

⌫

A⌫ f̂ [! � ⌫] .

In other words, the operator FT gives “soft” access to the components in the
Bohr decomposition of A. We have a corresponding “soft” Bohr decomposition, by
Fourier duality.

Lemma 159. For any operator A and Hermitian H,

A = C�

Z 1

�1
ÂH [!] d!

for C� := 1p
2�

p
2⇡

.

Importantly, a straightforward calculation shows that the Gaussian filter ensures
the operator FT decays exponentially in the frequency !:

Lemma 160. For any frequency ! and operator A satisfying kAkop  1,

ÂH [!] = e��!+�2�2

e�HÂH [! � 2�2�]e��H

To see why this is useful, note that because kÂH [!]kop  f̂(0) = O(��1/2), this en-

sures that ke�HÂH [!0]e��Hkop . e�2�2+�!0
��1/2. Crucially, the right-hand scales

exponentially in the frequency !0, rather than exponentially in the system size! In
contrast, norm of the imaginary time-evolved observable ke�HAe��Hkop can scale
exponentially in the system size.

3.2. Truncating the identifiability observable

Using Lemma 159, we can decompose A in hO, [A, H �H 0]i⇢ into low-frequency
and high-frequency terms under operator FT with respect to H 0 and apply the
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identifiability equation in Theorem 153 to obtain

�

2C�
hO, [A, H � H 0]i⇢ =

Z

|!0|⌦0
tr(⇢�JH 0; O, ÂH0 [!0]K) d!0 +

�

2

Z

|!0|�⌦0
hO, [ÂH0 [!0], H � H 0]i⇢ d!0 .

Let us try to write down a slightly more palatable expression for the first integral
that doesn’t involve the operator FT. Note that

ÂH0 [!0]H0(t � i�/2) = (
p

⇢0ÂH0 [!0]
p

⇢0�1)H0(t) ,

and Z

|!0|⌦0

p
⇢0ÂH0 [!0]

p
⇢0�1 d!0

=

Z

|!0|⌦0
ÂH0 [!0 � �2�]e��!0/2+�2�2/4 d!0

=
1p
2⇡

Z 1

�1
AH0(t0)

Z

|!0|⌦0
e�i(!0��2�)t0e��!0/2+�2�2/4 d!0f(t0)

| {z }
h+(t0)

dt0 ,

where in the first step we used Lemma 160, and similarly
Z

|!0|⌦0

p
⇢0�1ÂH0 [!0]

p
⇢0 d!0

=
1p
2⇡

Z 1

�1
AH0(t0)

Z

|!0|⌦0
e�i(!0+�2�)t0e�!0/2+�2�2/4 D!0f(t0)

| {z }
h�(t0)

dt0 .

Observe that

|h+(t)|, |h�(t)|  O
⇣p

�

�
e��2t2+�⌦0/2+�2�2/4

⌘
,

i.e. these functions are rapidly decaying in t.
Summarizing, we have the following:

Lemma 161. Let ⌦0 > 0 and define the truncated observable

�
⌦0

JH 0; O, AK

:=
1p
2⇡

ZZ 1

�1

⇣
h+(t0)O†

H(t)AH0(t0 + t) � h�(t0)AH0(t0 + t)O†
H(t)

⌘
g�(t) dt0dt .

(59)

Then

�

2C�
hO, [A, H�H 0]i⇢ = tr(⇢�

⌦0

JH 0; O, AK)+�

2

Z

|!0|�⌦0
hO, [ÂH0 [!0], H�H 0]i⇢ d!0 .

Let’s take stock of what this buys us. First, because g� , h+, and h� are rapidly de-

caying, the bulk of the double integral in the truncated observable �
⌦0

JH 0; O, AK
is coming from short-time evolutions of O and A, which are local by the aforemen-
tioned Lieb-Robinson bounds. In short, if we only look at the “low-degree” term
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in Lemma 161, we now have an observable which is entirely local which captures
the discrepancy between H and H 0.

It still remains to control the truncation error term
R
|!0|�⌦0 . For this, we can

use Lemma 160 in conjunction with locality of H � H 0 and A to show that for
⌦0 � ⌦(�2/d), where d is the degree of the dual interaction graph, the truncation
error is negligible. We defer the details to [CAN25, Lemma III.5].

As discussed above, there is still one important missing piece before we can turn
the above into a learning algorithm. The issue is that the truncated observable in
Eq. (59) ultimately still depends on H through O†

H(t). We explain the workaround
for this next.

4. Learning Algorithm

In this section we describe how to exploit the ingredients from the preceding
sections, deferring a complete proof of correctness to [CAN25].

To sidestep the issue that the truncated observable defined in Eq. (59) depends
on H, we first define a broader class of observables that contains this observable.

Definition 162 (General truncated observables). Fix ⌦0 > 0. Given operators
K, O, A, G, with K and G Hermitian, define

�⇤JG, K; O, AK :=

1p
2⇡

ZZ 1

�1

⇣
h+(t0)O†

G(t)AK(t0 + t) � h�(t0)AK(t0 + t)O†
G(t)

⌘
g�(t) dt0dt . (60)

Note that �⇤JH, H 0; O, AK = �
⌦0

JH 0; O, AK.

By design, we have the following:

Proposition 163. When K = H, then tr(⇢�⇤JG, K; O, AK) = 0 for all O, G, A.

Proof. In the proof of Lemma 161, instead of passing to h+, h�, we can directly

express the “low-degree” term tr(⇢�
trunc

(H 0; O, A)) as

1p
2⇡

Z 1

�1
tr
h
⇢

Z

|!0|⌦0

⇣
O†

H(t)ÂH0 [!0]H0(t+i�/2)�ÂH0 [!0]H0(t�i�/2)O†
H(t)

⌘
d!0

i
dt .

In the definition of �⇤JG, K; O, AK, H 0 and H above are replaced by K and G
respectively, yielding

1p
2⇡

Z 1

�1
tr
h
⇢

Z

|!0|⌦0

⇣
O†

G(t)ÂK [!0]K(t+i�/2)�ÂK [!0]K(t�i�/2)O†
H(t)

⌘
d!0

i
dt .

If K = H however, then mirroring the proof of the KMS condition, we have that

tr(⇢O†
G(t)ÂH [!0]H(t+i�/2)) = tr(

p
⇢ÂK [!0]H(t)

p
⇢) = tr(⇢ÂH [!0]H(t�i�/2)O†

H(t)) ,

so �⇤JG, H; O, AK = 0 as claimed. ⇤
This suggests that we can simply brute-force enumerate over a net of di↵erent K’s,
and for each one we check whether tr(⇢�⇤JG, K; O, AK) ⇡ 0 for all 1-local Paulis
A, and O, G in a suitable net. Previously we considered taking O = [A, H � H 0],
but given that this depends on H, we can instead use the fact that

k[A, H � H 0]k2⇢  2dmax
a

|h[A, Pa], [A, H � H 0]i⇢| (61)
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to restrict to O = [A, Pa] for all 1-local Paulis A and terms a in the support of the
Hamiltonian.

The (regularized) identifiability equation in Lemma 161, combined with Lemma 154
and the inequality in Eq. (61), ensures that if tr(⇢�⇤JG, K; O, AK) ⇡ 0 for all 1-local
A, O = [A, Pa], and G in a suitable net, then K ⇡ H.

Only one step remains: how do we enumerate over G, K? Naively, if the
Hamiltonian has m terms, this would require enumerating over a net over O(m)-
dimensional parameter space and incurring a runtime scaling exponentially in O(m).
Fortunately, there is a workaround that again exploits locality. The intuition is that
in the definition of �⇤JG, K; O, AK in Eq. (60), if A is a 1-local Pauli acting on site i,
then AK(t0+t) and O†

G(t) = [A, Pa]†G(t) are roughly supported on a small neighbor-
hood around i (because t0, t are not too large because of the exponential damping
of g� , h+, h�). Moreover, Lieb-Robinson bounds ensure that these operators do
not change much when G and K are replaced by their truncations to a suitable
neighborhood around the i-th site. Formally, we have the following estimate:

Lemma 164 (Lieb-Robinson bound). If Hamiltonian H =
P

a �aPa with coe�-
cients satisfying |�a|  1 has interaction degree d, then for any operator A acting
on subsystem S ✓ [n] and satisfying kAkop  1, if H` is given by removing all terms
from H at distance at least ` from S, then

kAH`(t) � AH(t)kop  O
⇣
|S| · (2d|t|)`

`!

⌘
.

The proof of this will be the subject of one of the homework exercises.
With this in hand, we essentially have a complete, albeit informal, description of
the algorithm:

• For each qubit i 2 [n]:
(1) Enumerate over a net of local Hamiltonians K` acting on the neigh-

borhood V (`, i) of radius ` around the i-th site
(2) For each such K`, use O(log n) copies of ⇢ to estimate the observable

values tr(⇢�⇤JG`, K`; [A, Pa], AK) for all local Hamiltonians G` acting
on V (`, i) and all terms Pa and 1-local Paulis A.

(3) If for any such K` all of these observable values are small, then we will
take our estimate of H over the local patch V (`, i) to be K`.

The quantitative details are somewhat dense and do not provide much additional
insight beyond the intuition outlined above, so we defer these to [CAN25].


