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The identifiability equation follows by a change of variable t — 2¢//. O

3. Regularization
3.1. Preliminaries

Definition 158 (Operator Fourier transform). Given a Hamiltonian H and an
operator A, define the operator Fourier transform (FT) Ay by

Aull = <= [~ w0,

where f(t) = e_"ztz\/m/2/7r is a Gaussian filter. The “regularizing” role of f(t)
will be become clearer in the sequel. Its Fourier transform f[w] = \/% ffooo e WhF(t) dt

satisfies flw] = ——— exp(—w?/402).
fies flw] Vovar p( / )
Note that the operator F'T commutes with imaginary time evolution:

PH Aylwle PH = (BT Ae—BH) ]
Taking the operator FT of both sides of Lemma 150 results in the following useful
identity:
Aglw] = ZAl,f[w —v].

In other words, the operator FT gives “soft” access to the components in the
Bohr decomposition of A. We have a corresponding “soft” Bohr decomposition, by
Fourier duality.

Lemma 159. For any operator A and Hermitian H,
A= C(,/ Aplw] dw

o 1
for C, = ——

Importantly, a straightforward calculation shows that the Gaussian filter ensures
the operator FT decays exponentially in the frequency w:

Lemma 160. For any frequency w and operator A satisfying ||Allop < 1,
Aplw] = 675“%”%265}1/@1{[(‘) —202p]e PH

To see why this is useful, note that because || Ag[w]|lop < £(0) = O(c~1/?), this en-
sures that || Ay [w/)e PH||op < €7 B+ 6=1/2 Crucially, the right-hand scales
exponentially in the frequency w’, rather than exponentially in the system size! In
contrast, norm of the imaginary time-evolved observable ||eH Ae=PH ||, can scale
exponentially in the system size.

3.2. Truncating the identifiability observable

Using Lemma 159, we can decompose A in (O, [A, H— H']), into low-frequency
and high-frequency terms under operator FT with respect to H' and apply the
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identifiability equation in Theorem 153 to obtain

B
2C,

/ tr(pA[H'; O, Agp[w']]) dw’ + g/ (O, [Ag/ W], H — H']), dw’ .
o <6 w26

(0, [A7H - H/DP =

Let us try to write down a slightly more palatable expression for the first integral
that doesn’t involve the operator FT. Note that

AW (t = iB/2) = (Vo' A (WP~ (),

and

Vo A WV e~ do!
o] <€
= / AH’ [(JJ/ - Jzﬂ}eiﬂw//2+g2ﬂ2/4 dw'
|| <

1 o0 : ’ ’ ’
=g [ Aw) [ et g

hy (t')

where in the first step we used Lemma 160, and similarly
/ Vo A W do!
o<

1 o0 . ! 7 7
- \/T?/ A (t/)/ e F P2 D ()

h_(t)

Observe that
|h+(t)|7 |h—(t)| < O<f602t2+ﬁ9//2+0252/4) ’

i.e. these functions are rapidly decaying in t.
Summarizing, we have the following:

Lemma 161. Let Q' > 0 and define the truncated observable

AYH"0, 4]
. 1 > not / / / T /
= o //_OC (h+(t YOO Am (' +1t) —h_(t) A (t' + t)OH(t)) gp(t)de'de.
(59)
Then

e (0 A -, = a(pE " (50, AD+5 [ (0 A H-H

Let’s take stock of what this buys us. First, because gg, h4, and h_ are rapidly de-

caying, the bulk of the double integral in the truncated observable A=Y [H;0,A]
is coming from short-time evolutions of O and A, which are local by the aforemen-
tioned Lieb-Robinson bounds. In short, if we only look at the “low-degree” term
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in Lemma 161, we now have an observable which is entirely local which captures
the discrepancy between H and H’'.

It still remains to control the truncation error term flw For this, we can

N>
use Lemma 160 in conjunction with locality of H — H’ anlcf A to show that for
Q' > Q(c?/0), where 0 is the degree of the dual interaction graph, the truncation
error is negligible. We defer the details to [CAN25, Lemma II1.5].

As discussed above, there is still one important missing piece before we can turn
the above into a learning algorithm. The issue is that the truncated observable in
Eq. (59) ultimately still depends on H through OTH (t). We explain the workaround
for this next.

4. Learning Algorithm

In this section we describe how to exploit the ingredients from the preceding
sections, deferring a complete proof of correctness to [CAN25].

To sidestep the issue that the truncated observable defined in Eq. (59) depends
on H, we first define a broader class of observables that contains this observable.

Definition 162 (General truncated observables). Fiz Q' > 0. Given operators
K,0,A,G, with K and G Hermitian, define

A*[G, K0, A] =

Note that A*[H, H'; 0, A] = A= [H'; 0, A].
By design, we have the following:
Proposition 163. When K = H, then tr(pA*[G, K; 0, A]) =0 for all O,G, A.
PROOF. In the proof of Lemma 161, instead of passing to hy,h_, we can directly
express the “low-degree” term tr(pZtrunC(H 10, A)) as

1 e A A
—y— 1 ’ ! ’ 3 — ’ ! (t—1 T !
T /_ L E /MQ/ (Ol (1) Ao 1 (1482~ App o (t=i8/2)0ly (1)) '] dt .
In the definition of A*[G, K;O,A], H and H above are replaced by K and G
respectively, yielding

1 o . A

T / . o / o T /

or /m tr [p /Mml (OG(t)AK[w 1k (t+iB/2)— A [k (t zﬂ/Q)OH(t)) dw ] dt.
If K = H however, then mirroring the proof of the KMS condition, we have that
r(pOL () At /1 (t4+38/2)) = tr(y/BAK /)11 (8)y/5) = tr(pAn [/ (t—i8/2)0} (1)),
so A*[G, H; 0, A] = 0 as claimed. O

This suggests that we can simply brute-force enumerate over a net of different K'’s,
and for each one we check whether tr(pA*[G, K; 0, A]) = 0 for all 1-local Paulis
A, and O, G in a suitable net. Previously we considered taking O = [A, H — H'],
but given that this depends on H, we can instead use the fact that

I[A, H — H']| < 20max [([A, P], [A, H — H'Y),| (61)
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to restrict to O = [A, P,] for all 1-local Paulis A and terms a in the support of the
Hamiltonian.

The (regularized) identifiability equation in Lemma 161, combined with Lemma 154
and the inequality in Eq. (61), ensures that if tr(pA*[G, K; O, A]) = 0 for all 1-local
A, O =[A, P,], and G in a suitable net, then K ~ H.

Only one step remains: how do we enumerate over G, K? Naively, if the
Hamiltonian has m terms, this would require enumerating over a net over O(m)-
dimensional parameter space and incurring a runtime scaling exponentially in O(m).
Fortunately, there is a workaround that again exploits locality. The intuition is that
in the definition of A*[G, K; O, A] in Eq. (60), if A is a 1-local Pauli acting on site 4,
then A (t'+1t) and Og(t) =[A, Pa]g(t) are roughly supported on a small neighbor-
hood around i (because t’,t are not too large because of the exponential damping
of gg,hy,h_). Moreover, Lieb-Robinson bounds ensure that these operators do
not change much when G and K are replaced by their truncations to a suitable
neighborhood around the i-th site. Formally, we have the following estimate:

Lemma 164 (Lieb-Robinson bound). If Hamiltonian H = ) AqP, with coeffi-
cients satisfying |\,| < 1 has interaction degree 0, then for any operator A acting
on subsystem S C [n] and satisfying || Allop < 1, if Hy is given by removing all terms
from H at distance at least £ from S, then

4
[Am, (t) — Au(®)llop < O("g‘ ' (QDtJ!tD ) '

The proof of this will be the subject of one of the homework exercises.
With this in hand, we essentially have a complete, albeit informal, description of
the algorithm:

e For each qubit ¢ € [n]:

(1) Enumerate over a net of local Hamiltonians K, acting on the neigh-
borhood V (¢, ) of radius ¢ around the i-th site

(2) For each such Ky, use O(logn) copies of p to estimate the observable
values tr(pA*[Gy, Ky; [A, P,], A]) for all local Hamiltonians G, acting
on V(¢,7) and all terms P, and 1-local Paulis A.

(3) If for any such Ky all of these observable values are small, then we will
take our estimate of H over the local patch V' (¢,1) to be K.

The quantitative details are somewhat dense and do not provide much additional
insight beyond the intuition outlined above, so we defer these to [CAN25].



