CHAPTER 2

Essentials of Quantum Mechanics

We begin by building up the basic ingredients of quantum mechanics. This
is not meant to be a course on quantum mechanics, and so we will proceed prag-
matically and without much fanfare. We will have the luxury of working with
finite-dimensional Hilbert spaces (if you do not know what this means, you will
soon), since this is the setting of most present applications of quantum learning
theory. Our pedagogical approach will be to revisit ordinary probability theory in
a suggestive way that naturally generalizes to quantum theory. Our exposition is
meant to be accessible to readers with a knowledge of linear algebra and probability
theory.

1. Probability theory on vector spaces
1.1. Probability distributions and their transformations

Here we will formulate probability theory on a discrete space, with some addi-
tional linear algebraic baggage that will be useful later. If we have a set of size IV
we can represent a probability distribution over that set as a vector in RV given by

Y4
. b2
p=.
PN
where p; is the probability of the ¢th item. We have, out of convenience, chosen an
ordering on our set of items so that we can organize the probabilities into a vector,
but of course this ordering is arbitrary. As usual, we require p; > 0 for all i since
probabilities cannot be negative, and also Zivzl p; = 1 so that the probabilities are
appropriately normalized. There is a natural way of packaging the normalization
condition. To this end, consider the row vector

=11 - 1].

Then Zfil p; = 1 is equivalent to
IT : ﬁ: 1 ;

and we will use this more compact expression henceforth. It will sometimes be
useful to consider the probability simplex Ay which is a subset of RY, where Ay
consists of all nonnegative vectors with entries summing to one. Then we can write
ﬁ < AN.

Next we consider a rudimentary version of dynamics. That is, what kinds of
transformations on p will map it into another valid probability distribution? The
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18 2. ESSENTIALS OF QUANTUM MECHANICS

simplest kind of transformation we can imagine is a linear one, so let us examine
that first. Letting M be an N x N matrix, we consider the transformation

ﬁ':Mﬁ7

so that p’ is the new probability distribution after the transformation. But what
conditions do we need to put on M such that p’ is a bona fide probability dis-
tribution for all initial distributions p? Well, we need for all entries of p’ to be
nonnegative, and for 17 - 5’ = 1. To ensure the first property, suppose that §'is all
zeroes except for the jth entry which equals one. (That is, we would sample the
jth object with probability 1 and never sample anything else.) To introduce some
other notation, let €; be vector which is all zeroes except for the jth entry which

equals one. Then we have

My

In order for all entries of 7 to be nonnegative, we evidently require M;; > 0 for all
j, and ¢ fixed. Varying over ¢ as well, we find the requirement that M;; > 0 for all
1,7, and so M must be a matrix with nonnegative entries. Since we also demand
that 17 - 5’ = 1, we find the condition

T o1 7T T
".p'=1 -M-¢;=1 . =1
MNj

That is, the jth column of M must sum up to one. Since this must hold for every
column, we find the condition

m-Mm=1". (2)

Thus a nonnegative matrix satisfying (2) will send probability vectors to probability
vectors. We honor this finding with a definition:

Definition 5 (Markov matrix). Let M be an N x N matriz. We say that M is a
Markov matriz if My; > 0 for alli,j, and 17 -M = 1T. Then M maps probability
vectors to probability vectors.

A few comments are in order. In many treatments of Markov matrices, there
is a different convention in which M is taken to act on probability distributions
‘to the left’, which would give the transpose our definition above. Our conventions
here are chosen to align with those of quantum mechanics, as we will see later on.

We immediately notice that Markov matrices behave nicely under composition.
Specifically, we have the useful lemma:

Lemma 6 (Composition of Markov matrices). If My, Ms, ..., My are Markov ma-
trices, then My --- My - My is also a Markov matriz.

The proof of this useful fact follows by a short calculation using the definition
(which you should do if you have not thought it through before). The upshot of
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this lemma is that we can consider transformations like
p'=My---My - M- p

as instantiating a type of ‘circuit’, with depth k. That is, we could say the words:
starting with p’ we apply M; followed by M, followed by M3 and so on, and then
finally apply M.

Before moving on to increasing levels of sophistication, we consider a simple
example:

Example 1 (Bernoulli coin, N = 2). We now specialize to a two—outcome
space and fix the ordering so that the first coordinate is outcome 0 (“success”)
and the second is outcome 1 (“failure”). A Bernoulli distribution with success
probability 6 is therefore represented by

Po = Eiﬁﬂ — [1€9] . 0elo1).

Consider the bit—flip dynamics with flip probability ¢ € [0, 1],

1—c¢ €
ME[ € 1—8]’

whose entries are nonnegative and whose columns each sum to 1, so M. is a Markov
matrix in our sense. Acting on p produces

(1—-¢e)f+¢e(1-0)

S o r_ .
pe'_Mﬁpe_LeHls)ue)} — 0 =0-2)0+e

where 6’ = Pr’[0] is the new success probability.

Some immediate checks help build intuition. When ¢ = 0 the map is the
identity; when € = 1 it deterministically flips 0 <+ 1; and when ¢ = % it sends every
1/2
1/2
the unique fixed point solves 6/ = 6 and is 6, = % (To see this, simply solve
0. = (1 —2¢e)0, + ¢ for 0,). Iterating M. a total of k times yields exponential
mixing toward the fixed point 6, at rate |1 — 2¢:

ok = (1 25)k(9(0) - %) + % .

Finally, the family M. of Markov matrices is closed under composition (illustrating
the lemma above): a short calculation shows

Mn M, = M6+’I’]7267] ’

input to the uniform distribution pj,, = { } in one step. For any 0 < ¢ < 1,

and in particular M¥ = M, _, with

Eeff

1—(1-2¢)k
o 1202

This two—state example already displays dynamics, fixed points, and circuit com-
position within the linear—algebraic language we have been developing.

Moving on, it is useful to recount a few features of probability distributions. If
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we have k probability distributions pj, ..., Pk, then we can form a new probability
distribution by forming a convex combination

k
P=) i (3)
j=1

where 7; > 0 and Z?Zl r; = 1. To see this, notice that p’ has nonnegative entries
and that 17 -5’ = Z?Zl ry (17 f;) = Z?Zl rj = 1. We can interpret rq,...,r, as a
probability distribution over k items in its own right, and say of (3) that we have
a probabilistic mixture of k probability distributions wherein we sample from
with probability r;. That is, rq,..., 7} is a probability distribution over probability
distributions. (You can use this ‘meta’ statement to impress your friends, if you
like.) To make this concrete, consider the following example:

Example 2 (Sampling two coins, N = 2). Suppose we have two Bernoulli
coins, represented by the probability vectors p /o and py /3, respectively. The first
one gives heads with probability 1/2 and tails with probability 1/2, and the second
gives heads with probability 1/3 and tails with probability 2/3. Now suppose I
have both coins in my pocket in such a way that when I reach in, I grab the first
coin with probability 1/4 and the second coin with probability 3/4. Then if I reach
in and grab a coin and toss it, what is the probability that I would output heads?
This is described by the convex combination
iﬁuz + 2171/3 = [g?g] ,

and so evidently the probability of heads is 3/8.
So far we have only considered linear transformations on p that map it into

another probability distribution. What if we consider nonlinear transformations?
One example would be the nonlinear transformation

SN2
T(ﬁ') _ | Zitap

Another example would be a Bayesian update. There are clearly a vast infinitude of
other possibilities as well. Among this infinitude of transformations there is a natu-
ral class that interfaces well with convex combinations of probability distributions.
In particular, suppose we mandate that T satisfies

k k
T\ D rify | =D i T() 4)
j=1 j=1

for any pi, ..., pr and any valid 71, ..., 7,. In words, we are requiring that a transfor-
mation of a probabilistic mixture is a probabilistic mixture of transformations (and
specifically, the same transformation). Such 7T’s satisfy a nice structure theorem:
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Theorem 7 (Mixture-preserving transformations are Markov matrices). Suppose
that T : Any — Ay is a mizture-preserving transformation, namely that (4) is
satisfied. Then there exists a Markov matrix M such that T(p) = M - § for all p.

PrROOF. Write p = Z;vzl pj €. Using the mixture-preserving property of T, we
have

N N
TR =T\ > pi& | = 0 TE).
j=1 j=1
Let M be the matrix whose jth column is T'(€};). Then T'(p) = M - p. Each column
T(€;) is a probability vector, so M;; > 0 and 17 .M =17. Thus M is a Markov
matrix, as claimed. O

Mixture-preserving transformations are natural from a physical point of view.
Imagine a preparation device that, with probabilities rq, ..., 7x, produces one of the
distributions p, ..., pr by consulting some randomly tossed coins you do not get to
see. If dynamics could distinguish whether this randomization happened “before”
or “after” the transformation, then the timing of the unseen coin flips would be
observable from the output statistics alone. Requiring that they not be observable
is exactly the statement of (4).

Two simple consequences are worth keeping in mind. First, the admissible
dynamics are closed under randomized control: if with probability r; you implement
a Markov matrix M}, then the overall map is

k
M/ = Z’I"j Mj,
Jj=1

which is again a Markov matrix since 17 - M’/ = Z?=1 r; (1T - M;) = 17 and all
entries are nonnegative. Second, if one further insists that deterministic states are
carried to deterministic states, so that €; never acquires additional randomness,
then each column T'(€};) must itself be a basis vector. Equivalently, M has exactly
one 1 (and zeros elsewhere) in each column. Such matrices are sometimes called
deterministic or functional Markov matrices. If in addition the mapping j — i(j)
is injective (no two distinct columns point to the same basis vector), then M is a
permutation matrix.

By contrast, nonlinear updates arise when you condition on a revealed out-
come and then renormalize; the rule in that case depends on which outcome was
announced, so it is not a single fixed map on Ay and does not represent closed-
system dynamics. This classical discussion sets the stage for the quantum case,
which we will treat soon. (There, the state space becomes the convex set of density
operators, mixture-preserving maps become convex-linear “channels,” and the role
of Markov matrices is played by completely positive, trace-preserving maps.)

1.2. Joint distributions and tensor products

In probability theory it is essential to consider joint distributions. Here we
develop the basic operations of joint distributions in a convenient and illuminating
linear algebraic notation. First we require some additional tools on the linear
algebra side. Specifically, we will upgrade our linear algebraic toolkit to multi-linear
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algebra. The key operation will be the tensor product, which is an operation for
joining two or more vector spaces.

We will proceed by motivating the tensor product informally through simple
examples, and then give the abstract definition. It is worth paying close attention
as the tensor product will serve as an essential piece of mathematical architecture
for almost everything in quantum learning theory.

Consider two vectors ¥, in R™Y. We denote their tensor product by ¢ ® . To
develop what this means, consider the example below.

Example 3. Let ¥ = [ﬂ and W = [ﬂ Then their tensor product v ® w is
represented by

S
®
g
I
| e—|
DN =
_ 1
®
| ———
=~ W
—_
I
I
0 O B W

In words, W gets ‘sucked in’ to ¥. Now let us take the tensor product in the other
order, namely W ® ¥

g
®
S
Il
| —|
o
| I
&
| —
[NR
—_
Il
Il
0 oW

From this we glean that, in general, ¥ ® @ # W ® ¥. Moreover, since ¥ € R? and
W € R2, we notice that ¥ ® @ € R*. To this end we write 7 ® @ € R?2 ® R? ~ R*.

3
Example 4. Suppose ¥ = B] and @ = 4| so that ¥ € R? and & € R3.
5

Then

eR%,

CoO O Ul = W

—_
o

and we write T ® W € R? @ R? ~ RS.

From the previous two examples we see the general rule that if 7 € RY and @ € RM,
then 7® @ € RN @ RM ~ RN¥M S0 upon taking the tensor product of two vector
spaces, the dimensions multiply. We can generalize this further by contemplating
another example:
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Example 5. Let v = [ﬂ , W= [ﬂ ,and U = [a . Then we have

15T
18
20

30
36
40
48

3
e S R ~ 4 5 24
TRUWRU=(TRW) QU= 6l @ =

8

and TR W Q7 € R2 @ R? @ R2 ~ RS,

The above example indicates that
RNI ® RNz R ® RNk ~ RNINZ”'Nk ’

namely that if we take the tensor product of k vector spaces then the result is a
vector space which is the product of the dimensions of the constituents.

We are now ready to define tensor products abstractly, and to really appreciate
what it means. Consider the following definition:

Definition 8 (Tensor product). Let V' and W be real vector spaces. A tensor
product of V and W is a vector space V@ W together with a map

VW =VW, (v,w) = v w,
that is bilinear in each argument, i.e. for all scalars a,b,c € R and vectors v,0, i,
(aT+bW) @U=0a(TRU)+b(d® ),
TR bW+ ct) =b(TRW) +c(Vu),
and in particular (a¥) @ W = U ® (awW) = a(¥ ® @). Concretely, one may construct

V @ W as the vector space spanned by formal symbols v @ w modulo the above
bilinearity relations.

To connect this with coordinates, fix bases {€;}X; of R and {f;}}Z, of R™. Then
the N'M simple tensors {é’i®f;}i7j form a basis of RV@RM | and so dim(RY @ RM) =
NM. If =3, v;€ and @ = ijjfj, then
T @ = vw; (e f),
i,J
which recovers the stacking rules seen in the earlier examples and realizes the iden-
tification RY @ RM ~ RNM,

Identifying R with the one—dimensional space spanned by 1, there are canonical
isomorphisms V@R~V ~R® V given by ¥ ® a — av and a ® ¥ — a¥/. Hence
RN @ Rl ~ RN ~R! @ RV,

Linear maps interact nicely with tensor products. If A : RV — RN and
B :RM — RM are linear, there is a linear map A® B : RN @ RM — RN @ RM
defined by

(A® B)(7® W) = (A?V) ® (BwW)

which in matrix form is the familiar Kronecker product.
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Remark 9 (Associativity of tensor products). For our purposes, it does not matter
whether we first form (V QW) and then tensor with U from the right, or first form
(W ®U) and then tensor with V' from the left. There is a canonical identification
between

(VeW)®U and V& (WeU),
and so we will simply write
VeWweU
without worrying about parentheses. This scales to many tensor factors. For a
vector space V we write
Ve =V ®..-aV,
—_———
k copies
which has dimension (dimV)* and a basis {€;, @ --- @ €, }. We will use this to
model multi—part systems: for example, a register of k N-ary variables naturally
lives in (RV)®F ~ RN,
As a word of caution, order still matters. As we explained before, in general

we have ¥ Q W # W ® ¥. When we want to swap the order of a tensor product we
will use the linear map SWAP : V@ W — W ® V, acting by

SWAP - (1@ W) =0 ® 7.
In summary, associativity lets us ignore parentheses; SWAP lets us reorder factors

when needed.

Going from the abstract back to the concrete, we have the example below:

Example 6. Suppose you are faced with this mess:
(aT+bW) @ (c5+di+edl) @ (fT+gT).

To expand it, what do you do? Don’t panic. If you have a long list of things to do,
just do them one at a time. Specifically in this case, use associativity to expand
the bracketed terms first:

(aT+bW) @ (c5+dt+edd) (f T+ g7)

=(acT@5+adTRt+aet@U+bewW @5+ bdwW Rt +bew @) @ (f 7+ g7).
Now you can multiply through and expand the rest of the terms as
acfTRFQq+acgTRFQF+adf TOT® {4+ adgT Rt 7
+aefTRURT+acgTRURST+befURSRJF+begW @FRF
+bdf T RTQR T+ bdgTW QtR 7+ bef HQUR [+ begl @UR T,

which is the desired expansion.

With some basic tensor product definitions at hand, we can now leverage them
to discuss joint probability distributions in a slick vector space formalism.

Respecting historical tradition,' suppose we have two urns, where the first urn
has N objects and the second urn has M objects. Suppose that the probability
that we select one of the N items in the first urn is described by the probability

ISee Ars Conjectandi by Jacob Bernoulli, published posthumously in 1713.
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vector € RN, and the probability that we select one of the M items in the second
urn is described by the probability vector ¢ € RM. Then if we select an item from
the first urn followed by the second urn, what is the probability that we sampled
item ¢ from the first urn and item j from the second urn? The answer is encoded
in the tensor product F® ¢, and in particular its (i — 1)M + jth entry:

[P'® dli-1)m+5 = Pid; -
We can extract this entry by dotting 7 ® ¢ against & ® é‘ij namely
E'eel) (Feq) =pia; -
The vector 7 ® ¢ is itself a probability vector living in Ayar € RVM: thus it is a
probability distribution on N M outcomes, as we wanted.
So far we have examined p'® ¢ which is a product distribution, assuming in our
example that our sampling from each of the two urns is uncorrelated. Below we

show in an example that convex combinations of tensor products can represent a
correlated, joint distribution.

Example 7. Suppose the first urn has two items (N = 2), say a ring and a
watch, and the second urn has three items (M = 3), say a tissue, a match, and a
rubber band. The urns were prepared by the ghost of Jacob Bernoulli. We are told
that with probability 1/3 he put a ring in the first urn and a rubber band in the
second urn, and with probability 2/3 he put a watch in the first urn and a match
in the second urn. Then the joint distribution over the urns is described by

0
0
0 0
1 2
H® 0 +ﬂ® 1| - |13
3 0 0
2/3
0

This distribution does not factorize into a tensor product of two individual vectors.

We abstract this example in the following remark.

Remark 10 (Joint distributions and multi-index notation). Given k probability
spaces represented by Ay, C RY: fori=1,...k, a distribution on the joint space
is represented by

ANI"'Nk c RV Nk ~ RV & ®RNk.

Product (independent) distributions have the special form PN @5 @---@5®) | and
general joint distributions are convex combinations of such products. For example,
if 13;(]) represents a distribution in R4, then
(1) o (2 _(k
Z I pi(l ) ®pi(2 )@ .- ®pi(k )
21,22, 0k
is a joint distribution so long as i iy...;, > 0 for all i1,is,...,7; and additionally
D s in... iy Tivia-i, = 1. Here we have used a multi-index notation, in which we are
putting subscripts on subscripts; this is to avoid notation like Y, . Tape... which

do not specify the total number of subscripts, which in our case is k. (Moreover,
there are only 26 letters of the Latin alphabet.) Multi-index notation may initially
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seem like gross notation, but you will soon grow accustomed to it, like generations
have before you.

Joint distributions interface nicely with the 17 row vector in a number of ways.
For clarity, let us write 1% to denote the all-ones row vector with N entries. Then
we have the nice identity

Tﬁl ® Tﬁz ®®T1T\7k = T;flez‘“Nk .

Thus if p'is a joint distribution living in An, n,...n,, then we have
T o 7T TT N\ =_ 7T -
Iy, ®1y, ®-- @1y, ) 7= 1NNy, P =1,

We can also use the all-one row vector to formulate a nice way of computing mar-
ginal distributions. To illustrate, we proceed with the example below.

Example 8. Consider a joint distribution on Ag C R? @ R3. Let us denote
the joint distribution by piap where A represents the first subsystem of two items,
and B represents the second subsystems of three items. Then we can write pap as

pAB(ng

L (1,3)
PAB = pAB(2,1)
(2,2)

Suppose we want to marginalize over the second probability space (the one over
three items). Letting 1y denote the N x N identity matrix, we marvel at the linear
operator 1o ® TST which maps R? @ R? — R2. We marvel at it because applying the
operator to pap we find

_ |paB(1,1) +pap(1,2) +pAB(173):| _ [pA(l)] -
pap(2,1) +pap(2,2) +pan(2,3)] ~ [pa(2)] P4

where p'4 is the marginal distribution on the first subsystem A, which has two items.

(1o ® 12 - Pas

The insight in the above example generalizes in the following way.

Remark 11 (Marginalizing any subset of subsystems). Let p € Apy,...n, be a joint

distribution on k subsystems with sizes N1, ..., Ni. For any subset S C {1,...,k},

define the linear “marginalization” map

k o

1y, ifjes

Mg = Ki=Ki®K,®- - ® K, Kj=9q=-7 .."
g 1157, ifj¢ s’

and so Mg : RN Ne 5 RProdiesNi - Then Mg - is the marginal over the subsys-

tems indexed by S.

To summarize, we have recast ordinary probability theory (on discrete prob-
ability spaces) in a linear-algebraic language, which has motivated us to develop
the fundamentals of multi-linear algebra and tensor products. This mathemati-
cal technology certainly illuminates aspects of multi-linearity lurking in ordinary
probability theory. But our true motivation was to set up probability theory in
such a way as to make (finite-dimensional) quantum mechanics appear as a natu-
ral generalization, using many of the same ingredients. In this next section when
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we introduce quantum mechanics, we will relentlessly capitalize on parallels with
probability theory, but also take care to point out where such parallels break down.

2. Quantum theory in finite dimensions

We begin with a very brief history of quantum theory. Circa 1900 Max Planck
studied blackbody radiation, and solved an inadequacy in the extant equations by
stipulating that energy is quantized in units of his eponymous constant. Then in
1905, Einstein suggests that light itself is quantized as “photons”, providing an
explanation for the photoelectric effect. In the ensuing decade, Bohr makes a first
pass at quantum theory (the so-called ‘old” quantum theory), and correctly predicts
the spectral lines of hydrogen. This first pass at quantum theory only goes so far,
and a second pass is made in the 1920’s. In 1924, de Broglie postulates that a
particle with momentum p has ‘wavelength’ A = h/p, which is soon confirmed
by electron diffraction experiments. Thereafter, Heisenberg, Born, and Jordan
developed matrix mechanics in 1925 (although they did not yet understand the
connection to de Broglie). In 1926, Schréodinger leveraged de Broglie’s insight to
develop wave mechanics, and that same year showed the equivalence with matrix
mechanics. That year as well, Born gave a ‘probabilistic’ interpretation of quantum
mechanics which clarified its connections to measurable quantities in experiments.
In 1927, Heisenberg wrote down his famous uncertainty principle. Most of the
abstract mathematical foundations of quantum mechanics were consolidated by
Dirac and von Neumann in the early 1930’s, and Einstein-Podolsky-Rosen as well
as Schrodinger highlighted the importance of entanglement in 1935. The year after
in 1936, Birkoff and von Neumann investigated how quantum mechanics leads to a
new form of logical reasoning that goes beyond classical Boolean logic; in hindsight
this may be regarded as the first hint of the possibility of quantum computing
(although it was not understood as such at the time).

Having completed our brief historical diegesis, we now turn to presenting the
axioms of quantum mechanics. There are various ways of ‘motivating’ the axioms
of quantum mechanics, although at some level they were guessed by very clever
people and experimentally confirmed by very clever people (sometimes in the op-
posite order). We will, however, give some intuition. But first, a word of caution.
When someone asks for a motivation for quantum mechanics in terms of classical
mechanics, this is philosophically backwards; it would be like asking for a deriva-
tion of special relativity starting from Newton’s equations. Indeed, just as special
relativity reduces to Newtonian physics in a certain regime of validity, so too does
quantum mechanics reduce to classical mechanics in a certain regime of validity.
Nonetheless, we will proceed with an idiosyncratic way of ‘guessing’ some of the
axioms of quantum mechanics starting from classical intuitions.

2.1. Mechanics on /P spaces: from classical to quantum

Let us begin by contemplating the salient mathematical structures undergirding
the dynamics of probability distributions discussed above. For this, it is useful to
have the following definition:

Definition 12 (Normed vector space). Let V' be a vector space over a field K ; we
will consider either V =RY (with K =R), or V =C (with K = C). A normed



