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we introduce quantum mechanics, we will relentlessly capitalize on parallels with
probability theory, but also take care to point out where such parallels break down.

2. Quantum theory in finite dimensions

We begin with a very brief history of quantum theory. Circa 1900 Max Planck
studied blackbody radiation, and solved an inadequacy in the extant equations by
stipulating that energy is quantized in units of his eponymous constant. Then in
1905, Einstein suggests that light itself is quantized as “photons”, providing an
explanation for the photoelectric effect. In the ensuing decade, Bohr makes a first
pass at quantum theory (the so-called ‘old” quantum theory), and correctly predicts
the spectral lines of hydrogen. This first pass at quantum theory only goes so far,
and a second pass is made in the 1920’s. In 1924, de Broglie postulates that a
particle with momentum p has ‘wavelength’ A = h/p, which is soon confirmed
by electron diffraction experiments. Thereafter, Heisenberg, Born, and Jordan
developed matrix mechanics in 1925 (although they did not yet understand the
connection to de Broglie). In 1926, Schréodinger leveraged de Broglie’s insight to
develop wave mechanics, and that same year showed the equivalence with matrix
mechanics. That year as well, Born gave a ‘probabilistic’ interpretation of quantum
mechanics which clarified its connections to measurable quantities in experiments.
In 1927, Heisenberg wrote down his famous uncertainty principle. Most of the
abstract mathematical foundations of quantum mechanics were consolidated by
Dirac and von Neumann in the early 1930’s, and Einstein-Podolsky-Rosen as well
as Schrodinger highlighted the importance of entanglement in 1935. The year after
in 1936, Birkoff and von Neumann investigated how quantum mechanics leads to a
new form of logical reasoning that goes beyond classical Boolean logic; in hindsight
this may be regarded as the first hint of the possibility of quantum computing
(although it was not understood as such at the time).

Having completed our brief historical diegesis, we now turn to presenting the
axioms of quantum mechanics. There are various ways of ‘motivating’ the axioms
of quantum mechanics, although at some level they were guessed by very clever
people and experimentally confirmed by very clever people (sometimes in the op-
posite order). We will, however, give some intuition. But first, a word of caution.
When someone asks for a motivation for quantum mechanics in terms of classical
mechanics, this is philosophically backwards; it would be like asking for a deriva-
tion of special relativity starting from Newton’s equations. Indeed, just as special
relativity reduces to Newtonian physics in a certain regime of validity, so too does
quantum mechanics reduce to classical mechanics in a certain regime of validity.
Nonetheless, we will proceed with an idiosyncratic way of ‘guessing’ some of the
axioms of quantum mechanics starting from classical intuitions.

2.1. Mechanics on /P spaces: from classical to quantum

Let us begin by contemplating the salient mathematical structures undergirding
the dynamics of probability distributions discussed above. For this, it is useful to
have the following definition:

Definition 12 (Normed vector space). Let V' be a vector space over a field K ; we
will consider either V =RY (with K =R), or V =C (with K = C). A normed
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vector space is a pair (V, || -||) where || - || : V — Rx¢ is the norm which satisfies
the following three properties:
(1) (Positive definiteness) ||U]| = 0 if and only if ¥ is the zero vector.
(2) (Absolute homogeneity) ||a @]| = |a|||¥]| for any a € K and any T € V.
(3) (Triangle inequality) ||+ @|| < ||T]| + ||@|| for any v,% € V.

Then we can define a very useful class of norms as follows:
Definition 13 (7 norms). The (? norm, defined over RN or CV for p > 1, is

P

N
15llp = { D Lol | - ()
j=1

One can show that (5) is indeed a norm in the sense of Definition 12 above. (It is
immediate to verify positive definiteness and absolute homogeneity; verifying the
triangle inequality involves a more delicate proof leveraging Hélder’s inequality.)

A special case of the (7 norm is when p = 1, giving ||¥]|; = Zjvzl |vj]. Then
when p’ describes a probability distribution, the normalization of probability dis-
tributions is equivalent to the condition ||p]l; = 1. Then our characterization of
Markov matrices can be equivalently phrased as follows: M is a Markov matrix if
and only if

M- plly = 1Pl

for all p’ describing probability distributions. In fact, using absolutely homogeneity,
we also have the slightly weaker statement that M is a Markov matrix if and only if
||M - %1 = ||#]|; where all entries of ¥ have the same sign. But then we might ask:
what are the matrices A such that ||A - ¥]|; = ||¥/]|; for all ¥ € RNV? Interestingly,
such matrices A, called ¢'-isometries, are highly restricted:

Theorem 14 (¢{!-isometries). Let K € {R,C} and A € KNXN. The following are
equivalent:
(1) ||A- |y = ||V]|1 for all ¥ € KV,
(2) A= P-diag(e1,...,en) where P is a permutation matriz and |e;| =1 for
all j (soe; =£1 if K=R).

In the proof below, for a vector ¥ = (vy,...,vy) € KV we write
supp(¥) :={ke{l,...,N}:v, #0}

for its support. We say two vectors have disjoint supports if their supports are
disjoint sets.

PRrOOF. Write @; := A - €; for the jth column of A. Then ||d;|1 = ||[A- €l =
€]l = 1.
Fix ¢ # j. In the real case,
@ + a@jlly = | A- (& £ &)lh = [[& + &l = 2.
By the triangle inequality we always have ||@; £ @;||1 < ||@;|1 + ||@;|l1 = 2; equality

of sums forces equality coordinate-wise. Thus for every coordinate k,

|ai(k) + a;(k)| = [ai (k)| + |a; (K)].
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For reals, the ‘+’ equality enforces same sign (or a zero), and the ‘=’ equality
enforces opposite sign (or a zero); both can hold only if a;(k)a;(k) = 0. Hence
supp(d;) Nsupp(d;) = .
In the complex case, use
@i + djlly = lla; +id;ll = 2.
Again equality is coordinate-wise, so with z = a,(k) and w = a;(k),
lz+w| =z[+|w], |z+iw]=]z]+]w].
Each equality in C holds if and only if the summands share an argument; the first
says z and w are collinear, the second says z and ¢ w are collinear. This is impossible
unless z = 0 or w = 0. Thus the supports of distinct columns are disjoint in the
complex case as well.
We now have N nonempty, pairwise-disjoint subsets S; := supp(@;) C {1,...,N}.
Therefore

N N
N < YIsi=|Us| <~

Jj=1 7=1
so |Sj| = 1 for all j. Hence @; = ¢, €,(;) for some permutation o and some ¢; # 0.
From [|@;||1 = |e;| = 1 we get |¢;| = 1, and writing P for the permutation matrix
of o gives A = P - diag(ey,...,en). The converse is immediate. O

Remark 15. Equivalently, the (' -isometries are the signed permutation matri-
ces when K =R and the monomial matrices with unimodular entries (i.e. their
absolute value equals one) when K = C. If one further assumes A;; > 0, then
necessarily €; = 1 for all j, so A is a permutation matriz.

The upshot of Theorem 14 is that the only linear maps that preserve the ¢! norm
on all of RY (or CV) are signed-permutation (or monomial) matrices. Thus, if we
insist on global ¢! -isometries, the dynamics amount only to relabeling coordinates
and multiplying by signs (or phases). A nontrivial theory appears when we restrict
attention to the positive cone and, in particular, to the probability simplex Ay:
requiring a linear map M to send probability vectors to probability vectors yields
precisely the column-stochastic (Markov) matrices introduced above. Moreover,
Theorem 14 generalizes as follows:

Theorem 16 ((P-isometries for p # 2). Let K € {R,C} and A € KN*N. Then for
p > 1 and p # 2, the following are equivalent:
(1) |A- 5|, =7, for all ¥ € KV.
(2) A= P-diag(e1,...,en) where P is a permutation matriz and |e;| =1 for
all j (soe; = £1 if K=R).

A proof can be found in [Aar04] (although the original proof goes back to at least
Banach). The theorem above shows that for p # 2 the only linear || - ||,~isometries
are monomial matrices, so there is no norm-preserving linear dynamics that mixes
coordinates beyond permutations (and multiplicative sign or phase factors). The
case p = 1 is special only in that, after restricting to the positive cone, we can relax
from “isometry on all vectors” to the weaker requirement “maps the probability
simplex to itself”; this yields the rich class of Markov matrices. For p > 1 and
not equal to 2, no analogous stochastic family exists. By contrast, when p = 2 the
isometries form a continuous group providing genuinely nontrivial linear dynamics.
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We have already explicated how the p = 1 case corresponds to classical mechanics;
we will see that the p = 2 case corresponds to quantum mechanics.

First let us give a structure theorem for the ¢2-isometries. We start with the
following definition.

Definition 17 (Orthogonal and unitary groups). A matriz R € RN*N s an or-
thogonal matriz if and only if it satisfies RT R = RRT = 1. This set of matrices is
closed under multiplication and inverses, and forms the orthogonal group O(N).
Similarly, a matriz U € CN*N s a unitary matriz if and only if it satisfies
UTU = UU' = 1. This set of matrices is closed under multiplication and inverses,
and forms the unitary group U(N).

Then our structure theorem for ¢2-isometries is as follows.

Theorem 18 (/2-isometries). Let R € RVN*N . The following are equivalent.
(1) |R- 9|2 = ||T]|2 for all ¥ € RN.
(2) Re€ O(N).
Similarly, let U € CN*N | The following are equivalent.
(1) U - %o = ||F|2 for all 7 € CN.
(2) U cU(N).

We defer the proof until later, when additional mathematical tools will allow us to
present it more simply.
In the same way that

pl=My---My - M- p

for the M; being Markov matrices constitutes ¢!-preserving dynamics on Ay C R,
then e.g.

UV =U,---Uy-Uy - ¥ (6)

for \I_;, U’ € CVN and the U; being unitary matrices constitutes £2-preserving dynam-
ics on CV. Just as probability distributions 7 € Ay C R play a starring role in
classical mechanics, the wavefunction plays a starring role in quantum mechanics.
In its simplest form, a wavefunction is a vector ¥ e CN. (The fact that U lives
on CV as opposed to RY is an empirical fact with measurable consequences.) In
particular, the wavefunction will provide a description of the ‘state’ of a quantum
system, and so often the words ‘wavefunction’ and ‘state’ are used interchangeably.

Quantum mechanics is essentially the study of dynamics of the form (6) on
CY, along with additional physical input that relates that dynamics to observable
reality. Other physical inputs can constrain the form of the unitaries which are
used. Before delving into these ‘physical’ considerations below, it is first worth
explicating a bit more of the mathematical structure of £? spaces, since they will
be our stomping grounds for the entirety of this book.?

So far we have introduced the structure of an 2 norm on C, in Definitions 12
and 13 (taking p = 2 in the latter). A nice feature of the £2 norm is that it gives us
a very nice additional structure on C, namely an inner product space. We define
inner product spaces below, and then explain how the ¢2 norm allows us to define
a canonical inner product space.

2They are also, more generally, the stomping grounds for our physical reality.
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Definition 19 (Inner product and inner product space). Let K € {R,C} and let
V' be a vector space over K. An inner product on V' is a map
(,y:VxV =K
such that for all u,v,w € V and a,b € K:
(1) (Conjugate symmetry) (v, w) = (w,v).
(2) (Sesquilinearity) (u,av + bw) = a(u,v) + b{u,w) and (au + bv,w) =
@ (u,w) + b (v,w). Equivalently, the inner product is linear in its second
arqgument and conjugate-linear in its first.>
(3) (Positive definiteness) (v,v) > 0, with equality if and only if v = 0.
A pair (V,{-,-)) is called an inner product space. The inner product induces a

norm by
[oll := v/ (v, v).

To fully bring you into the fold, we introduce a slightly more refined notion of inner
product spaces due to Hilbert.

Definition 20 (Hilbert space). A (complex) Hilbert space is a complex inner
product space (M, (-,-)) that is complete® with respect to the induced norm |[v|| =

VA{v,v).

Remark 21 (Finite-dimensional case and notation). When dim H < oo, complete-
ness is automatic, so every complex inner product space is a Hilbert space. In this
book we work exclusively with finite-dimensional Hilbert spaces, typically written
H ~ CN equipped with the €% inner product. We will often write UeH for a state
vector (“wavefunction”), and linear maps on H are represented by matrices; those
that preserve the inner product are precisely the unitary operators U : H — H.

As such, an inner product space can be thought of as a normed space, with addi-
tional structure. Below we explain how the 2 norm is induced by an inner product.

Definition 22 (£? inner product). On CV we take the standard inner product to
be the £2 inner product

N
(v,w) == vlw = Zijwj,
j=1
which on RY reduces to vTw. The induced norm is ||[v|| = \/(v,v) = (Z;v:1 |vj|2)1/2

|T]|2, which is precisely the €2 norm.
A useful notion is (Hermitian) conjugation, which we define below.

Definition 23 (Conjugation and Hermitian adjoint). For a complex number a € C,
its complex conjugate is a*. For a vector v € CN, write v* for entrywise conjugation
and define the conjugate transpose (or Hermitian conjugate) by

7= ()7

3This is the convention commonly used in physics. Over R it reduces to bilinearity.

4“Complete” means that every Cauchy sequence in H (with respect to the metric d(u,v) =
[Ju — v]| induced by the inner product) converges to a limit in H: for all € > 0 there exists N such
that m,n > N implies ||zm — zn| < &, and there is € H with ||z, — z|| — 0. Intuitively, there
are no ‘holes’ in the space.
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For a matriz A € CM*N write A* for entrywise conjugation and define its Her-
mitian adjoint (conjugate transpose) by

Al = (AT e CNVXM,

Equivalently, using the £ inner product (u,v) = ufv = Zf;l ujvj, we have that

At is the unique linear map satisfying
(z, Ay) = (ATz,y) forallz e CM yecCV.
The adjoint obeys, for all compatible A, B and scalars o, 5 € C,
(AB)" = Bt AT, (A +BB)T = a* AT + g*BT, (AN = A.
Over R, complex conjugation is trivial (a* = a), so AT = AT. Additionally, a
matriz H is Hermitian (or self-adjoint) if H = H.
Having defined the ¢2 inner product as well as the Hermitian adjoint, we can

rephrase Theorem 18 as:

Theorem 24 ({*-isometries, reprise). Let R € RN*N. The following are equiva-
lent.

(1) (R¥, RV) = (¥, %) for all ¥ € RY.

(2) Re€ O(N).
Similarly, let U € CN*N_ The following are equivalent.

(1) (U, U%) = (¥, 0) for all 5 € CV.

(2) U e U(N).
With our inner product definitions at hand, we are now equipped to provide a
simple proof of Theorem 24 and thus Theorem 18.

PROOF. We give the argument for CV; the real case is analogous with T replaced
by T and i replaced by +1.
Assume (1): (U7, U%) = (7,9) for all 7 € CN. Write
(U3, U0 = (7,UTU 7),
so for every 7,
(@, (UTU = 1)) = 0.
Set H := U'U — 1. Then (¢, H¥) = 0 for all #. For arbitrary &, we compute
(using conjugate-linearity in the first argument and linearity in the second):
0= (Z+y, H(@+ ) = (¥, HT) + (T, HY) + (J, HT) + (J, HY)
= (7, Hy) + (y, HT),
= (&, HY) — i{y, HT).
Solving these two equations gives (¥, Hy) = (g, HZ) = 0 for all Z,y. Fixing ¢ and
taking ¥ = H7 yields ||Hi||? = 0, so Hij = 0 for all i and hence H = 0. Therefore
UtU = 1. In particular, the columns of U are orthonormal, so U is invertible and

U~ = UT; hence also UUT =1 and U € U(N), establishing (2).
Conversely, if U € U(N) then UTU = 1, and for all 7,

(U5, U%) = (4, U'U %) = (4,7),
which is (1). This completes the proof. O
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Let us pause to summarize what we have done so far in this Subsection. First,
we recognized that dynamics on (finite) probability distributions is dynamics that
preserves f1. We then contemplated what dynamics would look like that preserves
£, for p > 1, and found that the only interesting option is p = 2, for which unitary
dynamics does the job. We then explained that the /5 is produced by a natural inner
product, which also interfaces nicely with unitary dynamics. Below, we will show
how {s-preserving dynamics is essentially (finite-dimensional) quantum mechanics,
along with some additional mathematical baggage which relates the dynamics to
observable measurements. Then let us commence below with the axioms of quantum
mechanics.

2.2. The axioms of quantum mechanics

Quantum mechanics was presented essentially its contemporary form by Paul
Dirac in 1930 [Dir81] and placed on a rigorous Hilbert space footing by John von
Neumann in 1932 [VIN18]. The reader might be surprised to discover that Dirac’s
book [Dir81] remains foundational for quantum-mechanics courses nearly a century
later.

2.2.1. Bra-ket notation

Before giving the axioms, we introduce Dirac’s famous bra-ket notation,
much beloved by physicists (and sometimes unfairly despised by mathematicians).
Consider the CV, viewed as a Hilbert space with ¢2 inner product. In the future,
we will simply say “consider the Hilbert space H ~ CN”. Recall that if 1/77 (E ceH
then their inner product is

The far right-hand side demonstrates that we can think of the inner product as a
bilinear map from H* ® H — C, where H* is the space of row vectors. There is a
canonical isomorphism from H to H* given by Hermitian conjugation This is all
Just a fancy way of saying the following: to take the inner product <¢ ¢> of w and
qb, we just take the Hermitian conjugate of w and dot that with (/)

The far left-hand side of 2.2.1 takes the notational form of a ‘bracket’. Dirac
suggests that we enclose vectors in H by |- ), so that instead of writing qi? we write

|¢). Such an object is called a ‘ket’. In similar spirit, a column vector Pt e H* is
enclosed by (- |, so that instead of writing 1! we write (1/|. Such an object is called
a ‘bra’. Then bras and kets are related via Hermitian conjugation, namely

)t = (4]

Finally, we can put together bras and kets to form
(Plo) = (P, 4) = Zw@ o,
which is a...(drum roll please) ‘bra-ket’! Get it?”

5Famously, Dirac was not known for his sense of humor.
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Besides being somewhat whimsical, Dirac’s bra-ket notation is in fact extremely
useful. The reason is not so much mathematical, but rather visual. As you your-
self will experience, bra-ket notation is visually suggestive of how to organize and
manipulate certain equations (especially compared with arrows and daggers), and
eases the mind towards simplifying complicated expressions in multi-linear algebra.
That is, Dirac found a notation which resonates with the structure of our minds.

Let us develop Dirac’s notation a bit further. In addition to formlng inner
products’ (|¢) = z/ﬂL gb, we can also form ‘outer products’ |¢)(¢| = WL Here
|¢) (1] is evidently a rank 1, N x N matrix. Then the trace of this matrlx is evidently

tr(|#)(¢]) = (&[) -

Since Hermitian conjugation for a scalar is the same as complex conjugation, we
have the useful identity

((WleN)T = (le))* = (Blw),

where we observe that the 1) and ¢ have switched sides.

It is useful to show a few examples to get you fully acquainted with bra-ket
notatlon Consider the standard orthonormal basis {€;}¥; of CV, which we denote
by {|9)}¥; in our new notation. The orthonormality of the basis elements can be

expressed as
. 1 ifi=j
(ilg) = 6ij == e
0 ifi#j

where 0;; is called the Kronecker delta. Recalling that the identity matrix is
1= Ef\il € - €7, in bra-ket notation we have

Then given a state |¢), we have

) = 1) = (D ) = D10 Gil) = Dol (™

=y
where 1); are the coefﬁcients of [1) in the |i)-basis. (Note also that ({(i|i))
(e]))* = (¥|i) = ¢F, and so the coefficients of (1| in the (i|-covector basis are 9} )

Similarly, for a matrlx M, we have

N N
M:]1~M-]l:<Z|i><il>M > il ZI MG ZMW\
i=1 j=1

,j=1 M i,j=1
(®)

where M;; are the matrix elements of M in the |i)-basis. As a check of our notation,
let us compute M|y} using the far-right hand sides of both (7) and (8):

M|¢>: Zszl .]| Z¢k|k Z Mz]¢k| ]‘k Z ZM13¢3 i-

1,7=1 i,5,k=1 1=

_5]k
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So we see that the coefficients of M|¢) in the |i)-basis are Zjvzl M, ;1;, exactly as
expected using the standard rules of matrix multiplication.

For our final flourish, we present the spectral theorem in finite dimensions in
bra-ket notation. The spectral theorem will play a crucial role in the formulation
of quantum mechanics.

Theorem 25 (Spectral theorem for normal matrices in finite dimensions). Let
A :H — H be a linear operator on a finite dimensional complex Hilbert space
H ~ CN. The following are equivalent
(1) A is normal, meaning ATA = AAT.
(2) There exists an orthonormal basis of eigenstates |v1),...,|uvn) and com-
plex numbers \1,..., AN such that A = Z;\;l Aj lvj)(v;| Equivalently, if
U is the unitary with columns |v;) then UTAU = diag(A1, ..., AN).

We will break up the proof into a few lemmas:

Lemma 26. Let A: H — H be a normal matriz for H ~ CN. Then A has at least
one eigenvector [v). Moreover, if Alv) = Av), then Af|v) = \*|v).

PROOF. By the fundamental theorem of algebra the characteristic polynomial p 4 ()
det(A — A1) has a complex root. If X is such a root, then A — A1 has a non-trivial
nullspace, meaning that A has an eigenvalue A and at least one nonzero eigenstate
lvy with AJv) = Alv). Without loss of generality we take |v) to be normalized so
that (v|v) = 1. Now notice that

(0] AT v) = X" 9)

——
=" (o]

Recall that the Cauchy-Schwarz inequality |(¥|¢)| < /(¥]|P)1/(@|¢) achieves equal-

ity only when |¢) is proportional to |¢). Assuming A is normal, we have
Al = [(v]A"|v)]

< V{vl)y/ (v AT Alv)

< \Jwlaatpy)

= Al
where we have used Cauchy-Schwarz in the first equality and normality of A in
the equality thereafter. We thus see that Cauchy-Schwarz is tight in the above
setting, implying that Af|v) is proportional to |[v). In light of (9), we find that
Atlv) = A*|v), and so |v) is an eigenstate of At with eigenvalue \*. O

Lemma 27. Let A : H — H be a normal matriz for H ~ CN. If A has two
eigenvectors |v), lw) with distinct eigenvalues X\, i, then (v|lw) =0, i.e. [v) and |w)
are orthogonal.

ProOOF. Without loss of generality we can take (v|v) = (w|w) = 1. Using Lemma 26,
Atlw) = p*|w). Then

(A = w)(vjw) = (A= p1)v|w) = ([ (A" - p* L)w) =0,

and so we find (v|w) = 0. Thus eigenstates with distinct eigenvalues are orthogonal.
O
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Lemma 28 (Invariance of an eigenspace and its orthogonal complement). Let A
be a normal operator on a finite—dimensional complex Hilbert space H and let

Ey = ker(A — )\]1)

be the \—eigenspace of A. Then E) and Ej- are each invariant under both A and
At. In particular, the restriction

Al gy
is normal on the Hilbert space E/J\-

PROOF. By Lemma 26, if |y) € F) then Afly) = A\*|y). Now let |z) € Ef and
ly) € Ex. Then we have (y|A|z) = (ATy|z) = A\*(y|z) = 0. Since (y|A|z) = 0
for every |y) € E\, we have A|z) € Ei. Thus A leaves Ey invariant. The same
calculation with A and AT interchanged shows A' leaves Ey invariant as well.
Trivially A leaves Ey invariant and from the first step Af leaves E) invariant too.

Finally set B := A|E*. Since both A and AT leave Ey invariant, the adjoint

of B with respect to the inner product on Ey- is BT = AT‘ .- Hence
A
B — (At — (AAN| . — BBt
BB = (414) |, = (A1) = BB,
so B is normal on Ejy. 0
With the above lemmas at hand, we finally turn to the proof of Theorem 25.

PROOF OF THEOREM 25. We prove (1) = (2) by induction on N. The case N =1
is immediate. Assume the claim holds for all dimensions smaller than N.

By Lemma 26 the operator A has an eigenvalue A\ and a nonzero eigenstate.
Let E) = ker(A — A1) and choose an orthonormal basis {|v1),...,|v.}} of Ex. By
Lemma 28 the orthogonal complement Ey is invariant under both A and AT. Hence
the restriction

B:= A! o
is a normal operator on the Hilbert space E)J\- whose dimension is N — r. By the
induction hypothesis there exists an orthonormal basis {|v,11),...,|vn)} of Ef
consisting of eigenstates of B, hence of A. Together with {|v1),...,|v.)} this gives

an orthonormal eigenbasis of H. Writing A in this basis yields

N
A=A )l
j=1

with A\; = X for j <7 and A; equal to the eigenvalues of B for j > r. This proves

2).

For (2) = (1) we compute
N N
AT= "N o) (v and  ATA =" [N 0)(v;] = AAT,

j=1 j=1

and so A is normal. This completes the proof. O

Remark 29 (Hermitian and unitary cases). If A = AT then every \; is real and A =
2 Ajlvg) (sl If A is unitary then every A; has [A;| =1 and A =73, e%i|v;) (vj]
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As an application, consider the following definition.

Definition 30 (Projector). A projector P on H is a Hermitian idempotent: P =
Pt = P2. Equivalently, P = 0 and its eigenvalues lie in {0,1}.

Hermiticity implies that all of the eigenvalues of P are real and positive semi-
definiteness implies that all of the eigenvalues are nonnegative. Then P? = P
means that the eigenvalues are either 0 or 1. Supposing H ~ CV, we can use the
spectral decomposition to write P as

T N T
P=Y"1-fo)(vil+ D 0 fui(ui| =Y [vi)(vil
i=1 i=r+1 =1

for some orthonormal basis {|v;)}}¥,, where 7 is the rank of the projector. Then P
is a projector onto the r-dimensional subspace of H spanned by {|v;)}7_;. We can
check that P+ =1 — P is also a projector onto the orthogonal complement.

Having covered the essence of bra-ket notation, we turn to presenting the ax-
ioms of quantum mechanics a la Dirac (with some refinements).

2.2.2. The axioms

Here we give the standard axioms of quantum mechanics, with some commen-
tary. The axioms describe the basic mathematical objects of quantum theory, and
tether them to observable reality. In the form presented below, the axioms may
seem somewhat abstract, and we will discuss this unusual feature shortly. We have
tailored the axioms to the finite-dimensional setting for clarity.

(1) (Quantum states fully describe a system at fixed time.) At a
fixed moment in time, a quantum system about which we have maximal
information is fully described by some state vector |¢) with unit norm
living in a Hilbert space H.

(2) (Time evolution of a closed system is unitary.) If a quantum system
is closed (i.e. it is not interacting with any external system) and starts in
an initial state [¢)g), then at any later time T the state |¢)r) will be related
to the original one by some unitary, that is [¢)r) = Ult)o) for some unitary
U that may depend on T'.

(3) (Physical properties have associated projectors.) Any measurable
physical property (such as “spin-up along the z-axis”, or “the particle is
in region R”) has an associated projector P. Such an operator P is an
example of an observable.

(4) (Measurement and the Born rule.) Suppose we have a property cor-
responding to a projector P, and measure whether or not a system with
state vector [¢) (with unit norm) has that property. Then the probabil-
ity that we measure |¢)) to have the given property is (¢|P|v). This is
called the Born rule. If |¢) is measured to have the property, then after
measurement the new state of the system is

Ply)y Pl
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which also has unit norm (assuming Pl¢) # 0, in which case we would
never have measured [¢)) to have the given property anyway.)
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Now we have a number of comments to make in order to unpack the axioms. The
first two axioms were motivated by our previous discussions, in which quantum
mechanics is framed as norm-preserving dynamics on ¢2. The first axiom codifies
that a (normalized) vector in a Hilbert space contains everything there is to know
about a quantum state, and the second axioms explains that the dynamics of an
isolated system is described by unitary dynamics. Unitary dynamics is reversible
since (i.e. unitary matrices are invertible), and so in a closed system the future is
completely determined by the past and the past is completely determined by the
future. An interesting feature of the second axiom is that it does not tell us which
unitaries we should use. Indeed, given a classical system, we might wonder what
kinds of quantum unitary dynamics can reproduce the the classical dynamics in the
appropriate regime. This is a subtle question which goes beyond the axioms, and
requires additional empirical input.

The first axiom’s proviso “about which we have maximal information” deserves
explanation. Consider flipping an unbiased coin to decide whether to prepare a sys-
tem in state |¢pg) or |¢1). After the flip, the system is in state |¢)g) with probability
1/2 or state |¢1) with probability 1/2. This probabilistic description reflects our
classical ignorance, not any fundamental quantum uncertainty. The system is def-
initely in one state or the other; we simply do not know which. There is a useful
formalism for handling such incomplete knowledge, which we will introduce later.

The second axiom’s restriction to “closed” systems is similarly important. A
closed system does not interact with any external environment. If such interac-
tions were present, we would need to account for our incomplete knowledge of the
environment, which we will address later. When a system couples to an external
environment, its dynamics can become non-unitary: information leaks irreversibly
from our system into the environment, where it becomes inaccessible to us. Despite
being non-unitary, these dynamics can be nicely characterized.

While the first and second axioms specify the basic mathematical objects at
play, the third and fourth axioms tether those mathematical objects to empirical
reality. This is differently structured than e.g. Newton’s axioms of classical me-
chanics, which specify properties like position and momentum but do not explain
what it means to measure them, or how to do s0.%

Now we turn to the third axiom. The third axiom assigns yes/no properties of a
quantum system to linear subspaces of the Hilbert space, via projectors onto those
subspaces. For instance, the property ‘the spin points up in the z-direction’ corre-
sponds to some projector P. The opposite property corresponds to the projector
P =1 — P onto the orthogonal complement. If we have a collection of properties
corresponding to projectors P, ..., Px, we call them compatible if the correspond-
ing subspaces are mutually orthogonal, i.e. P;P; = 0 for ¢ # j. This orthogonality
implies [P;, P;] = 0. Under orthogonality, if a state answers ‘yes’ to one property

6Part of the reason is that position and momentum, at least in some informal sense, were
already known to empiricists in Newton’s time. Thus people already knew how to measure them.
Interestingly, as we all know, one can use Newton’s laws to build devices to better measure position
and momentum. You might wonder if this would lead to a circular argument: can we use devices,
built using principles from Newton’s laws, to then do experiments to test Newton’s laws? In short,
the answer is ‘yes’, if we (correctly) conceive of such experiments as testing the consistency of
Newton’s laws with empirical reality. Indeed, since measurements of quantities in Newton’s theory
require Newton’s theory for their specification and possibly design, and there is no clear sense in
which one can use empirical findings to test Newton’s laws ex nihilo.
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(i.e. Pily) = |¢)), it automatically answers ‘no’ to all others (i.e. P;|¢p) = 0 for
j # 1). The projectors P,..., Py are complete if their corresponding subspaces
span all of H, which is equivalent to P; + --- + P, = 1. Completeness means that
a state will always answer ‘yes’ to at least one property. Then compatibility and
completeness together mean that the state will answer ‘yes’ to exactly one property
in the list (and thus ‘no’ to all others in the list). The following remark captures
some useful nomenclature.

Remark 31 (Hermitian observables). Let Py, ..., Py correspond to compatible and
complete properties. Suppose that my detector registers the real number a; to in-
dicate ‘yes’ for property j. (For instance, if the jth property is ‘the particle is at
position j’, then the detector might just output the number j for the position.) Then
we can construct the Hermitian observable

k
A=>"a; P, (10)
j=1

which encodes measurement outcomes with respect to our list of properties. In
particular,

k

k
(W|Alp) = Z a; (V| Pj|y) = Z a; Prob[measure outcome j],
j=1

=1

where in the last equality we used the Born rule from the fourth aziom. The re-
sulting number is the expectation value of the output of our detector. Since by the
spectral theorem all Hermitian operators A can be written in the form (10), we
call Hermitian operators observables, with the understanding that their physical
interpretation in terms of properties comes from their spectral decomposition.

A consequence of our discussion above is that certain properties may be in-
compatible, i.e. correspond to non-orthogonal subspaces. For instance, properties
corresponding to projectors P and @ are said to be incompatible if [P, Q] # 0. In
this case the two measurements do not admit a common eigenbasis, so in general
one cannot ascribe sharp values to both properties simultaneously. Typically, if
a state has a definite value for the property corresponding to P, then measuring
the property corresponding to @ will yield (in light of the fourth axiom) proba-
bilistic results, and the act of measurement can disturb the system so that P is no
longer definite. This lack of joint sharpness is the essence of incompatibility, under-
lies the uncertainty principle, and is one of the distinguishing features of quantum
mechanics vis-a-vis classical mechanics.

The fourth axiom is, in a sense, the most mysterious. While the third ax-
ioms abstractly explains the relationship between properties of a system and the
quantum state of a system, the fourth axiom tethers these properties to proba-
bilistic observable outcomes. To begin, recall that we said that a state |[¢)) has
the property corresponding to P if P|y) = |¢), and so not have the property if
(1 — P)|y) = PH|yp) = [¢) (or equivalently P|p) = 0). So far we have accounted
for the possibilities Ply) = |¢) or 0, but if |¢) is neither in the subspace corre-
sponding to P or orthogonal to it, then P|y) # [¢) and # 0. The Born rule tells us
that we should interpret the norm squares of the projection of |¢) into P, namely
(Y| PTP|y) = (1| P|2p), as the probability that |¢)) has that property. More peculiar
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is that when we affirmatively measure [1)) to have that property, the |¢) assumes
Pl)

the new state —=—
(Y|P|y)

. This state now has the property, since

Ply) Pl
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Said another way, if we measure a state to affirmatively have a property (whether
or not it definitely had the property before), it subsequently assumes that prop-
erty. This is different from classical mechanics: for example, classical mechanics
stipulates that if we measure a particle to have position x then it definitely had
position x before. In quantum mechanics, by contrast, measuring a particle to be in
position z just tells us that the particle is in position  now, even though it might
not ‘definitively’ have had that property before.
We notice another peculiarity of the fourth axiom, which is that the map

Ply)
V= P ()

is not in general unitary (unless P = 1 in which case the map is the identity since
|¢) has unit norm). This would appear to violate the second axiom, which neces-
sitates unitary dynamics. However, we were careful in the second axiom to specify
that unitary dynamics happens for closed systems; in ordinary circumstances, the
measurement apparatus is external to the system that it interrogates, and so the
non-unitary of (11) is not in conflict with the second axiom. However, the fourth
axiom tempts us to consider the following: if we described the detector (which
itself is quantum-mechanical) as part of the closed system, then the total detector-
system dynamics must be unitary; then can the fourth axiom somehow be derived
from the other three? This question is both challenging and profound. Its core dif-
ficulty is that the first three axioms do not speak of probability whereas the fourth
axioms does speak of probability; as such, the question posed would mandate that
probability is emergent in quantum mechanics. There have been a vast number of
attempts to weaken the fourth axiom or to in some sense ‘derive’ it from the other
three (which often involves covertly bringing in a weakening of the fourth axiom
anyway). For our purposes, we can think of the fourth axiom is pragmatic, in that
it tells us what happens, in practice, when we measure a quantum system with an
external measurement device.”

Having abstractly discussed the axioms, some examples are in order.

Example 9 (Dynamics and projective measurements for a single qubit).
We work in the two-dimensional Hilbert space H ~ C? with the computational basis

"Related to the previous footnote, we might wonder how we can test quantum mechanics as
a theory if we require quantum theory to build the measurement apparatus needed for the tests
themselves. As before, the answer is that we are testing the consistency of quantum mechanics,
and its alignment with empirical reality. One cannot generally test quantum mechanics with
detectors solely intelligible through Newtonian mechanics, i.e. you cannot solely use classical to
test quantum. But it is fine to use quantum to test quantum, so long as it all works out empirically.
And it very much does.



