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is that when we a�rmatively measure | i to have that property, the | i assumes

the new state P | ip
h |P | i

. This state now has the property, since

P · P | ip
h |P | i

=
P | ip
h |P | i

Said another way, if we measure a state to a�rmatively have a property (whether
or not it definitely had the property before), it subsequently assumes that prop-
erty. This is di↵erent from classical mechanics: for example, classical mechanics
stipulates that if we measure a particle to have position x then it definitely had
position x before. In quantum mechanics, by contrast, measuring a particle to be in
position x just tells us that the particle is in position x now, even though it might
not ‘definitively’ have had that property before.

We notice another peculiarity of the fourth axiom, which is that the map

| i 7�! P | ip
h |P | i

(11)

is not in general unitary (unless P = 1 in which case the map is the identity since
| i has unit norm). This would appear to violate the second axiom, which neces-
sitates unitary dynamics. However, we were careful in the second axiom to specify
that unitary dynamics happens for closed systems; in ordinary circumstances, the
measurement apparatus is external to the system that it interrogates, and so the
non-unitary of (11) is not in conflict with the second axiom. However, the fourth
axiom tempts us to consider the following: if we described the detector (which
itself is quantum-mechanical) as part of the closed system, then the total detector-
system dynamics must be unitary; then can the fourth axiom somehow be derived
from the other three? This question is both challenging and profound. Its core dif-
ficulty is that the first three axioms do not speak of probability whereas the fourth
axioms does speak of probability; as such, the question posed would mandate that
probability is emergent in quantum mechanics. There have been a vast number of
attempts to weaken the fourth axiom or to in some sense ‘derive’ it from the other
three (which often involves covertly bringing in a weakening of the fourth axiom
anyway). For our purposes, we can think of the fourth axiom is pragmatic, in that
it tells us what happens, in practice, when we measure a quantum system with an
external measurement device.7

Having abstractly discussed the axioms, some examples are in order.

Example 9 (Dynamics and projective measurements for a single qubit).
We work in the two-dimensional Hilbert space H ' C2 with the computational basis

7Related to the previous footnote, we might wonder how we can test quantum mechanics as
a theory if we require quantum theory to build the measurement apparatus needed for the tests
themselves. As before, the answer is that we are testing the consistency of quantum mechanics,
and its alignment with empirical reality. One cannot generally test quantum mechanics with
detectors solely intelligible through Newtonian mechanics, i.e. you cannot solely use classical to
test quantum (see [Mah18] for a quantum cryptographic wrinkle in this story). But it is fine to
use quantum to test quantum, so long as it all works out empirically. And it very much does.
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{|0i, |1i} where |0i :=


1
0

�
and |1i :=


0
1

�
. We introduce the Pauli matrices8

X =


0 1
1 0

�
= |0ih1| + |1ih0|

Y =


0 �i
i 0

�
= �i |0ih1| + i |1ih0|

Z =


1 0
0 �1

�
= |0ih0| � |1ih1|.

They are Hermitian, satisfy X2 = Y 2 = Z2 = 1, and obey

[�j ,�k] = 2i "jk` �`, {�j ,�k} = 2 �jk 1,

where (�1,�2,�3) = (X, Y, Z). Their eigenvalues are ±1, with Z|0i = |0i and
Z|1i = �|1i.

Measuring “spin along z” corresponds to the compatible, complete pair of pro-
jectors

P0 = |0ih0| =
1+ Z

2
, P1 = |1ih1| =

1� Z

2
.

Likewise, “spin along x” has eigenstates |±i := 1p
2
(|0i ± |1i) with projectors

P (x)
+ = |+ih+| =

1+ X

2
, P (x)

� = |�ih�| =
1� X

2
.

More generally, for any unit vector n̂ = (nx, ny, nz) 2 R3 we have

P (n̂)
± =

1± n̂·~�
2

, n̂·~� := nxX + nyY + nzZ,

which indeed satisfy the properties of projectors.
For dynamics, consider unitary rotations generated by the Pauli matrices. For

any unit vector n̂ and real angle ✓, define

Rn̂(✓) := exp

✓
� i

✓

2
n̂·~�

◆
= cos

✓
✓

2

◆
1� i sin

✓
✓

2

◆
n̂·~�.

Physically, Rn̂(✓) is the time-t propagator of a closed qubit with Hamiltonian H =
⌦
2 n̂·~� and ✓ = ⌦ t. That is, Rn̂(✓) can be written as e�iHt for the above choices of
H and t.

Suppose we prepare the qubit in the +1 eigenstate of Z, namely | 0i = |0i.
If the system evolves under the Hamiltonian H = ⌦

2 Y for time t, the unitary
U(t) = Ry(✓) acts with ✓ = ⌦ t. Acting on |0i and using Y |0i = i|1i, the evolved
state is

| ti = cos
�
✓
2

�
|0i + sin

�
✓
2

�
|1i.

Now consider measuring in the Z basis. The Born rule with projectors P0, P1

gives

pZ(0 | t) = cos2
�
✓
2

�
, pZ(1 | t) = sin2

�
✓
2

�
.

8The hardest one to remember is Y , in particular the placement of the minus sign in the
matrix elements. High energy physicist Howard Georgi has a useful mnemonic: the ‘minus i’ is
lighter so it floats all the way to the top. Now hopefully you will never forget where the minus
sign goes.
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If outcome 0 is observed, the state collapses to |0i; if outcome 1 is observed, it
collapses to |1i.

If instead we measure in the X basis, the probabilities are

pX(± | t) = 1
2 (1 ± h t|X| ti) .

Since h t|X| ti = sin ✓, we find

pX(+ | t) = 1+sin ✓
2 , pX(� | t) = 1�sin ✓

2 .

To connect with the Bloch sphere, define for any | i the triple

~r = (hXi, hY i, hZi) 2 R3.

For the state | ti, we obtain ~r(t) = (sin ✓, 0, cos ✓), a unit vector rotating about the
y-axis. The Born rule in this language becomes

Pr[outcome ± along n̂] =
1 ± n̂ · ~r

2
.

Armed with our basic examples, we next examine some additional mathematical
structures in quantum mechanics.

2.3. Additional mathematical structures

Here we will introduce some additional mathematical apparatus which we can
view as additional tools for the applications of the axioms of quantum mechanics
presented above.

2.3.1. Tensor products and density matrices

We now carry the tensor–product technology into the quantum setting and in-
troduce the operator language that lets us handle classical uncertainty and open–system
e↵ects in a clean way. When two systems are modeled by Hilbert spaces HA ' CNA

and HB ' CNB , their composite is described by the tensor product

HAB := HA ⌦ HB ' CNANB .

Choose orthonormal bases {|iiA})NA
i=1 and {|jiB}NB

j=1. The product kets {|iiA ⌦
|jiB}i,j form an orthonormal basis of HAB . As in the classical case, linear maps
respect tensoring. If XA acts on HA and YB acts on HB , then

(XA ⌦ YB)
�
| iA ⌦ |�iB

�
= (XA| iA) ⌦ (YB |�iB).

Operations on a single part are written XA ⌦ 1B or 1A ⌦ YB .
A pure state | i 2 HAB is called a product state if it factors as | i =

| iA⌦|�iB . Otherwise it is entangled. The following normal form is indispensable.

Theorem 32 (Schmidt decomposition). For any unit vector | i 2 HA ⌦ HB there
exist orthonormal sets {|kiA} and {|kiB} together with nonnegative numbers {�k}
that sum to one such that

| i =
rX

k=1

p
�k |kiA ⌦ |kiB , r  min{NA, NB} .

The number r is uniquely defined and is called the Schmidt rank.
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This is really just another way of stating the linear algebraic fact that every NA⇥NB

matrix (in this case the entries of | i reshaped into such a matrix) has a singular
value decomposition, so we defer the proof until a bit later.

Up to this point, our description of a single system has used a unit vector
| i. That choice corresponds to maximal information. In many situations there
is additional classical uncertainty. Perhaps a device prepares | ji with probability
rj . It is convenient to package such ensembles into a single object, the density
operator (or density matrix)

⇢ :=
X

j

rj | jih j | 2 S(H), (12)

which is Hermitian, positive semidefinite, and satisfies tr(⇢) = 1. In fact, any
operator which is Hermitian, positive semidefinite, and satisfies tr(⇢) = 1 can be
written in the form (12), and so we define:

Definition 33 (Density operator). A density operator ⇢ 2 S(H) is a linear
operator on H which satisfies ⇢ = ⇢†, tr(⇢) = 1, and ⇢ ⌫ 0.

We say that a state is pure when ⇢ = | ih |, equivalently ⇢2 = ⇢ and tr(⇢2) = 1,
and otherwise it is mixed. A pure state corresponds to a rank 1 density matrix,
and a mixed state corresponds to rank greater than 1. The Born rule extends
linearly. Specifically, for a projector P ,

Pr[“yes” on P given ⇢] = tr(P⇢),

and for an observable A,

E⇢[A] = tr(A⇢).

Upon a projective measurement with projectors Pj , two kinds of updates occur. If
we condition on the outcome j, then

⇢ 7�! Pj⇢Pj

tr(Pj⇢)
.

If the outcome is forgotten, then

⇢ 7�!
X

j

Pj⇢Pj ,

which removes coherences between the corresponding subspaces.
Joint states admit a notion of marginalization that mirrors our classical ~1T

trick. Given ⇢AB on HA ⌦ HB , the state of A alone is the partial trace over B:

⇢A := trB(⇢AB) 2 S(HA).

In coordinates with respect to any orthonormal basis {|jiB},

trB(⇢AB) =
X

j

�
1A ⌦ hj|

�
⇢AB

�
1A ⌦ |ji

�
. (13)

The map trB is characterized by the identity

tr
⇥
(XA ⌦ 1B)⇢AB

⇤
= tr

⇥
XA trB(⇢AB)

⇤
for all XA ,

so it really is the quantum version of taking a marginal. If ⇢AB is diagonal in
the product basis, (13) reduces exactly to summing out the B index. The identity
trB(⇢AB) = ⇢A is the quantum sibling of marginalization by dotting probability
vectors with with ~1T , as appeared in our earlier discussion.
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Two corollaries are immediate from the Schmidt decomposition. First, if | i is
a pure vector on AB and ⇢AB = | ih |, then ⇢A = trB(⇢AB) and ⇢B = trA(⇢AB)
share the same nonzero eigenvalues. The state | i is entangled if and only if either
reduced state is mixed, equivalently if and only if the Schmidt rank is strictly
greater than 1. Second, every mixed state can be realized as the marginal of a pure
state on a larger space. Given a decomposition ⇢A =

P
k �k|kihk|, the vector

|�iAR =
X

k

p
�k |kiA ⌦ |kiR

on an auxiliary space HR satisfies trR(|�ih�|) = ⇢A. This construction is called a
purification.

With the above notations at hand, we can finally give a proof of the Schmidt
decomposition. As mentioned above, it is really just a repackaging of the singu-
lar value decomposition, but it is instructive to go through the argument in the
quantum language above.

Proof of Theorem 32. Let | i 2 HA⌦HB be a unit vector. Form the rank-one
projector

⇢AB := | ih |
and the reduced state on A

⇢A := trB(⇢AB) 2 S(HA).

Then ⇢A is Hermitian, positive semidefinite, and satisfies tr(⇢A) = 1. By the
spectral theorem there exist an orthonormal set {|kiA}r

k=1 and numbers �k � 0
with

Pr
k=1 �k = 1 such that

⇢A =
rX

k=1

�k |kiAhk| ,

where r = rank(⇢A)  NA.
For each k with �k > 0 define a vector in HB by

|k̃iB :=
1p
�k

(hk|A ⌦ 1B) | i .

We first check orthonormality. For k, ` with �k,�` > 0 we compute

hk̃|˜̀i =
1p
�k�`

h |
�
|kih`|A ⌦ 1B

�
| i

=
1p
�k�`

hk| ⇢A |`i =
1p
�k�`

�` �k` = �k` ,

so {|k̃iB}r
k=1 is an orthonormal set in HB . Hence r  NB as well.

Next we claim that | i =
Pr

k=1

p
�k |kiA ⌦ |k̃iB . Let us define

|�i :=
rX

k=1

p
�k |kiA ⌦ |k̃iB ,

and compare the two vectors by projecting onto A. For any m in an orthonormal
basis of HA that extends {|kiA}r

k=1 we have

(hm|A ⌦ 1B) | i =

(p
�m |m̃iB if �m > 0

0 if �m = 0
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by construction. The same identities hold with | i replaced by |�i. Therefore

(hm|A ⌦ h�|B)
�
| i � |�i

�
= 0

for every m and every |�i 2 HB . Since such product bras span (HA ⌦ HB)⇤, it
follows that | i = |�i.

Finally observe the reduced state on B,

⇢B := trA(⇢AB) =
rX

k=1

�k |k̃iBhk̃| ,

so the nonzero spectra of ⇢A and ⇢B agree and equal {�k}. The number r is
therefore the common rank of ⇢A and ⇢B , which gives r  min{NA, NB}.

We have produced orthonormal sets {|kiA} and {|k̃iB} and nonnegative num-
bers {�k} that sum to one such that

| i =
rX

k=1

p
�k |kiA ⌦ |k̃iB ,

which is the desired form. ⇤
Remark 34 (Uniqueness and degeneracies). The multiset of nonzero coe�cients
{�k} is uniquely determined by | i since it is the spectrum of ⇢A and also of ⇢B.
The orthonormal families {|kiA} and {|k̃iB} are unique up to phases when the �k

are distinct. Within a degenerate eigenspace one may apply a unitary rotation on A
and the same conjugate rotation on the corresponding span on B without changing
the state | i.

Now we turn to some examples.

Example 11 (Embedding classical probability into quantum states). Fix
the computational basis {|ii}N

i=1 of CN . A classical distribution ~p = (p1, . . . , pN ) 2
�N is encoded as the diagonal density matrix

⇢cl(~p) =
NX

i=1

pi |iihi|.

A measurement in this basis with projectors Pi = |iihi| returns outcome i with
probability tr(Pi⇢cl) = pi, matching the classical rule.

Example 12 (Bell state, reduced states, and entanglement). Consider
two qubits with computational basis |0i, |1i. We will write |00i as a shorthand for
|0i ⌦ |0i, and similarly for |11i. The maximally entangled vector

|�+i =
1p
2

(|00i + |11i) , ⇢AB = |�+ih�+| ,

has reduced states

⇢A = trB(⇢AB) =
1

2
1, ⇢B = trA(⇢AB) =

1

2
1 .

Each qubit by itself looks completely random, yet the pair together sits in a definite
pure state. Local mixedness together with global purity is a signature of entangle-
ment and has no classical analogue.
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In summary, tensor products allow us to assemble composite systems, while
density matrices enable us to represent both quantum superposition and classical
randomization within a single calculus. The partial trace serves as the quantum
marginalization operator, mirroring our earlier ~1T trick. Together, these tools pro-
vide a unified linear-algebraic framework for handling open systems, correlations,
and measurements on subsystems.

2.3.2. POVMs and channels

We now broaden the two pillars introduced so far, namely unitary time evo-
lution and projective (yes/no) measurements, into the general language of quan-
tum channels and POVMs (positive operator-valued measures). This framework
cleanly captures open-system dynamics (interaction with an environment) and the
most general measurement statistics allowed by quantum mechanics. The picture
to keep in mind is simple: attach an ancilla (the “apparatus” or “environment”),
evolve unitarily on the larger space, and then either (i) forget the ancilla (a chan-
nel), or (ii) read the ancilla (a measurement). Everything that happens to a system
can be modeled this way.

First we consider dynamics in the form of quantum channels. Fix a system
Hilbert space HS ' Cd (here the subscript ‘S’ stands for ‘system’). In practice a
system rarely evolves in isolation; it can interact with an external register HE ' Cd0

prepared in some state ⇢E (here the subscript ‘E’ stands for ‘environment’). If the
joint closed dynamics is unitary USE , then any initial system state ⇢S evolves as

⇢S 7�! E [⇢S ] := trE

�
USE(⇢S ⌦ ⇢E)U †

SE

�
.

From the cyclicity of trace and tr(⇢E) = 1, we immediately get tr(E [⇢S ]) = tr(⇢S),
i.e. trace preservation. Moreover, tensoring with an arbitrary ancilla and applying
the above form shows complete positivity : (IdA ⌦ E)[X] ⌫ 0 for every positive X
on HA ⌦ HS .9

Definition 35 (Quantum channel). A quantum channel (or quantum process)
on HS is a linear map E : S(HS) ! S(HS) that is completely positive and trace-
preserving (CPTP).

The dilation form above is not just an example; it is universal:

Theorem 36 (Stinespring dilation). Every CPTP map E on HS ' Cd admits a
representation of the above form for some environment dimension d0, environment
state ⇢E, and unitary USE that are fixed independently of the input ⇢S.

We defer the proof of this since we need an additional structural result about
quantum channels.

A convenient “matrix-element” form drops out when ⇢E is pure, say ⇢E =
|0ih0|. Expanding USE in an orthonormal basis {|iiE} and defining the Kraus
operators

Ki := hi|USE |0i 2 Cd⇥d,

9Positivity alone would require E[X] ⌫ 0 whenever X ⌫ 0 on HS ; complete positivity de-
mands the same after adjoining any spectator system A. Physically, this guarantees the map
never creates negative probabilities even on half of an entangled state.
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we obtain the operator-sum (Kraus) representation

E [⇢] =
X

i

Ki ⇢K†
i ,

X

i

K†
i Ki = 1.

Conversely, any family {Ki} obeying the completeness relation defines a CPTP
map. The Kraus representation is nonunique: {Ki} and {

P
j uijKj} (with u uni-

tary) describe the same channel. These facts are formalized and proved in the
following theorem:

Theorem 37 (Kraus decomposition). Let E : S(HS) ! S(HS) be CPTP on a
d–dimensional Hilbert space HS ' Cd. Then there exist operators K1, . . . , Kr on
HS with

E [X] =
rX

i=1

Ki X K†
i for all X,

rX

i=1

K†
i Ki = 1,

where r  d2. Conversely, any finite family {Ki} obeying
P

i K†
i Ki = 1 defines

a CPTP map by the same formula. The representation is nonunique: if U is any
unitary and K 0

i :=
P

j UijKj, then {K 0
i} yields the same channel.

Proof. To begin, recall the Choi-Jamio lkowski isomorphism. Fix an orthonormal
basis {|ji}d

j=1 of HS and define the (unnormalized) maximally entangled vector

|⌦i :=
dX

j=1

|ji ⌦ |ji 2 HS ⌦ HS .

The Choi matrix of E is

JE := (Id ⌦ E)(|⌦ih⌦|) =
dX

j,k=1

|jihk| ⌦ E
�
|jihk|

�
.

By complete positivity we know that JE ⌫ 0. Moreover, one can check that for any
X on HS we have

E [X] = tr1
h
(XT ⌦ 1) JE

i
, (14)

where tr1 is the partial trace over the first tensor factor. This “reconstruction
identity” follows by expanding X in the basis {|jihk|}.

Next observe that since JE ⌫ 0 it admits a decomposition into rank–one pro-
jectors,

JE =
rX

i=1

|viihvi|

where |vii 2 HS ⌦ HS , and r = rank(JE)  d2. Each vector |vii can be viewed as
defining an operator Ki : HS ! HS via the canonical “vectorization” correspon-

dence: if |vii =
P

a,b v(i)ab |ai ⌦ |bi, then

Ki =
X

a,b

v(i)ab |biha|.

One can verify directly that for every X,

tr1
h
(XT ⌦ 1) |viihvi|

i
= KiXK†

i .
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Combining this with (14), we find

E [X] =
rX

i=1

KiXK†
i ,

which is precisely the operator–sum form.
It remains to check the normalization. Since E is trace–preserving, for all ⇢ we

have

tr(⇢) = tr(E [⇢]) =
rX

i=1

tr(Ki⇢K
†
i ) = tr

⇣
⇢

rX

i=1

K†
i Ki

⌘
.

Because this holds for all density operators ⇢, it follows that
P

i K†
i Ki = 1.

Conversely, suppose we start with any collection of operators {Ki} satisfyingP
i K†

i Ki = 1. The map

E [X] =
X

i

KiXK†
i

is clearly linear. Trace preservation follows from the same computation above,
and complete positivity is immediate: for any ancilla system A and any positive
operator Z on HA ⌦ HS , we have

(IdA ⌦ E)[Z] =
X

i

(1A ⌦ Ki) Z (1A ⌦ Ki)
† ⌫ 0.

Finally, note that the Kraus representation is not unique. If u = (uij) is any
unitary matrix and we define K 0

i =
P

j uijKj , then

X

i

K 0
iXK 0†

i =
X

j

KjXK†
j ,

X

i

K 0†
i K 0

i =
X

j

K†
j Kj = 1,

so {Ki} and {K 0
i} describe the same channel. ⇤

Remark 38 (Minimal Kraus number). The number r of Kraus operators can always
be chosen as r = rank(JE)  d2. This number is minimal; any other representation
can be obtained by enlarging the list with zero operators and applying a unitary
rotation among them.

Having established the Kraus decomposition, we can now establish Stinespring
dilation:

Proof of Theorem 36. By the Kraus decomposition, choose operators K1, . . . , Kr

on HS with r  d2 such that

E [⇢] =
rX

i=1

Ki ⇢K†
i and

rX

i=1

K†
i Ki = 1.

Let us introduce an environment Hilbert space HE ' Cr with orthonormal basis
{|iiE}r

i=1 and define an isometry

V : HS �! HS ⌦ HE , V | i :=
rX

i=1

Ki| i ⌦ |iiE .
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Because
P

i K†
i Ki = 1, we have V †V = 1; indeed, for all |�i, | i 2 HS ,

h�|V †V | i =
rX

i=1

h�|K†
i Ki| i = h�| i.

Taking the partial trace over E then recovers the channel:

trE

�
V ⇢V †� = trE

0

@
X

i,j

Ki⇢K
†
j ⌦ |iihj|

1

A =
X

i

Ki⇢K
†
i = E [⇢].

To express V using a unitary on system plus environment with a fixed en-
vironment state, fix a distinguished vector |0iE 2 HE and identify HS with the
d–dimensional subspace HS ⌦ |0iE ⇢ HS ⌦ HE . Define USE on this subspace by

USE

�
| i ⌦ |0iE

�
:= V | i

for all | i in HS . Since V is an isometry, this prescription maps an orthonormal
basis of HS ⌦ |0iE to an orthonormal set in HS ⌦HE . Extend that partial isometry
to a unitary USE on all of HS ⌦HE by completing orthonormal bases on the domain
and codomain and defining USE to map one basis to the other. Consequently,

E [⇢] = trE

�
V ⇢V †� = trE

⇣
USE (⇢⌦ |0ih0|) U †

SE

⌘
,

which is precisely the stated dilation with environment state ⇢E = |0ih0| and envi-
ronment dimension d0 = r. The unitary USE and the state ⇢E are determined by
the chosen Kraus family for E and therefore are fixed independently of the input ⇢.
This completes the proof. ⇤

Remark 39 (Minimal and nonunique dilations). If the Kraus family is chosen to be
minimal (with r = rank(JE)), then d0 = r is the minimal environment dimension.
Any two Kraus representations {Ki} and {K 0

i} related by a unitary mixing K 0
i =P

j uijKj yield dilations whose isometries di↵er by a unitary on the environment:
V 0 = (1 ⌦ u) V . Allowing a mixed ⇢E entails no extra generality, since any mixed
state can be purified by enlarging the environment.

Next we make some additional remarks about quantum channels.

Remark 40 (Composition and randomized control). Channels are closed under
composition and convex combination. If E and F are channels, then so is F � E.
And if with classical probabilities rj you apply Ej, the average map

P
j rj Ej is again

a channel. Thus the set of channels is a convex monoid under composition.

Remark 41 (Heisenberg picture). The adjoint map E⇤ acts on observables and
satisfies

tr
�
E [⇢] A

�
= tr

�
⇢ E⇤[A]

�
, E⇤[1] = 1 .

In Kraus form, E⇤[A] =
P

i K†
i AKi. We will use this duality to shuttle between

“state evolution” and “observable evolution.”

Having discussed general dynamics, we now turn out attension to general mea-
surements. Projective measurements are special cases of more general procedures
obtained by attaching an apparatus, evolving unitarily, and reading an outcome on
the apparatus. Let {|iiA}N

i=1 be an orthonormal basis for the apparatus and let U
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act on system+apparatus. If the apparatus is initialized in |0iA and we measure it
in the {|iiA} basis, the probability of outcome i on input ⇢ is

p(i) = tr(Fi ⇢) , Fi := M†
i Mi, Mi := hi|U |0i,

with
P

i Fi = 1 by unitarity.

Definition 42 (POVM). A positive operator-valued measure (POVM) on HS

is a finite collection of positive semidefinite operators {Fi}N
i=1 obeying

P
i Fi = 1.

Given a state ⇢, the Born rule assigns outcome probabilities p(i) = tr(Fi⇢).

The operators Fi are sometimes called e↵ects. When Fi = Pi are orthogonal pro-
jectors that sum to 1 we recover the projective measurements from the axioms.
In general, many distinct physical procedures can realize the same POVM statis-
tics. One convenient realization chooses measurement operators (one set among
many)

Mi with M†
i Mi = Fi,

and then the post-measurement state conditioned on outcome i is

⇢ 7�! Mi ⇢M†
i

tr(Fi⇢)
.

The family {Ii}i with Ii[⇢] := Mi⇢M
†
i is called a quantum instrument; it records

both the probabilities and the (normalized) output states. Forgetting the outcome
yields the average channel

P
i Ii.

As with channels, there is a universal dilation theorem for POVMs:

Theorem 43 (Naimark dilation). Every POVM {Fi} on HS can be realized as a
projective measurement on a larger space: there exist an auxiliary Hilbert space HA,
an isometry V : HS ! HS ⌦HA, and orthogonal projections {⇧i} on HA such that

Fi = V †(1⌦ ⇧i)V and p(i) = tr
�
Fi⇢

�
= tr

⇥
(1⌦ ⇧i) V ⇢V †⇤.

Remark 44 (Rank-one refinement). Every POVM admits a refinement to rank-one
e↵ects. Diagonalize each Fi =

P
j �ij |vijihvij | and regard the collection {Fi,j :=

�ij |vijihvij |}i,j as a new POVM. Coarse-graining its outcomes by summing over j
reproduces the original statistics:

X

j

tr(Fi,j⇢) = tr(Fi⇢).

Thus, without loss of generality, one may work with rank-one POVMs when conve-
nient.

To concretize the formalism, we record two examples.

Example 13 (Unsharp qubit measurement). For a qubit with Pauli vector
~� = (X, Y, Z) and a unit vector n̂ 2 R3, the two-outcome e↵ects

F (⌘,n̂)
± =

1± ⌘ n̂·~�
2

, 0  ⌘  1,

form a POVM. The parameter ⌘ is a sharpness: ⌘ = 1 gives the projective mea-
surement along n̂, while smaller ⌘ yields noisy readout with probabilities

p(±) = tr
�
F (⌘,n̂)
± ⇢

�
= 1

2

�
1 ± ⌘ n̂ · ~r

�
,



3. A TASTE OF QUANTUM MANY-BODY PHYSICS 51

where ~r = (hXi, hY i, hZi) is the Bloch vector of ⇢.

Example 14 (Embedding classical dynamics into a channel). Classical
column-stochastic matrices are naturally realized as quantum channels that act
classically on the computational basis and erase coherence. Fix an orthonormal
basis {|ii}N

i=1 and let M = (Mij) be column-stochastic (Mij � 0 and
P

i Mij = 1
for each j). Define Kraus operators

Ki|j =
p

Mij |iihj|.

Then

EM [⇢] =
X

i,j

Ki|j ⇢K†
i|j ,

X

i,j

K†
i|jKi|j =

X

j

⇣X

i

Mij

⌘
|jihj| = 1,

so EM is CPTP. On diagonal inputs ⇢cl(~p) =
P

j pj |jihj| we recover the classical
update

EM

⇥
⇢cl(~p)

⇤
=

X

i,j

Mijpj |iihi| = ⇢cl(M · ~p),

while for j 6= k the coherence |jihk| is sent to 0 because each Kraus term carries the
same input label on both sides. Thus EM is a “classicalizing” channel: it dephases
in the computational basis and then applies the Markov update to the resulting
distribution.

We have seen that the familiar tools of unitary evolution and projective mea-
surements represent only the simplest quantum operations. Real quantum systems
demand a richer framework: we enlarge the Hilbert space with ancillary systems,
apply unitary evolution to the combined system, then either trace out the an-
cilla (yielding quantum channels) or measure it (yielding POVMs). This procedure
generates the most general dynamics and measurement statistics that quantum me-
chanics allows. We have explained that quantum channels are completely positive
trace-preserving (CPTP) linear maps, characterized by the Kraus representation or
Stinespring dilation. POVMs are sets of positive operators that sum to the iden-
tity, understood through Naimark’s theorem. But the conceptual heart is simple:
we compose systems, evolve them unitarily, and then selectively forget or record
information.

This unified framework will prove essential for understanding real quantum
devices; indeed, in the real world, noise is inevitable, information is incomplete, and
systems interact with environments beyond our control. Rather than limitations to
work around, these general operations become the natural language for describing
quantum processes in practice.

3. A taste of quantum many-body physics

We now turn to many–body systems built from n qubits. The ambient Hilbert
space is the n–fold tensor product

H := (C2)⌦n ' C2n .

It is convenient to fix the computational basis {|0i, |1i} on each site and to use the
Pauli operators X, Y, Z discussed above. To streamline notation, we introduce a
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shorthand: for 1  i  n we write

Xi := 1⌦(i�1) ⌦ X ⌦ 1⌦(n�i),

and similarly for Yi and Zi. Products such as ZiZj are understood to mean Zi ⌦Zj

with identities on all other sites, which we will not display explicitly.
More generally, a Pauli string on n qubits is a tensor product

P = �a1 ⌦ · · · ⌦ �an , �ak 2 {1, X, Y, Z },

and its weight is the number of non-identity factors,

w(P ) := |{ k : �ak 6= 1 }|,
while its support is the set supp(P ) of sites where �ak 6= 1. Two elementary com-
mutation facts will be used repeatedly: Pauli matrices on di↵erent sites commute,
while distinct Pauli matrices on the same site anticommute. Equivalently, Pauli
strings P and Q either commute or anticommute, with

PQ = (�1)Nanti(P,Q) QP,

where Nanti(P, Q) counts the number of sites where both act nontrivially with
di↵erent Pauli matrices.

With this notation in hand, we can define Hamiltonians. A Hamiltonian on H
is a Hermitian operator H = H†. In units ~ ⌘ 1, the closed–system time evolution
is

U(t) = e� iHt, | (t)i = U(t) | (0)i.
Since H is Hermitian, its spectrum is real. We denote its smallest eigenvalue by E0

(the ground energy) and the corresponding eigenspace by the ground space. A
Hamiltonian is called k–local if it decomposes as

H =
X

a

Ha , w(Ha)  k for every term Ha,

i.e. each interaction acts nontrivially on at most k sites. In the qubit setting one
often expands H in the Pauli–string basis,

H =
X

↵

h↵ P↵ , w(P↵)  k,

with real coe�cients h↵. To express geometric locality, we can place the n qubits
on the vertices V of a graph G = (V, E). A geometrically k–local Hamiltonian has
each Ha supported on a connected region of at most k vertices (for k = 2, typically
on edges (i, j) 2 E). For example, on a line G = {1, . . . , n} with edges (i, i + 1), a
nearest–neighbor two–local Hamiltonian has the form

H =
n�1X

i=1

Hi,i+1 +
nX

i=1

Hi,

with Hi,i+1 acting only on sites i, i + 1 and Hi acting on site i.
The canonical playground for these ideas is the (ferromagnetic) transverse–field

Ising model (TFIM) on a graph G = (V, E):

HTFIM(J, h) = � J
X

(i,j)2E

ZiZj � h
X

i2V

Xi, J � 0, h � 0.

The first term lowers the energy when neighboring Z–spins align, while the second
term lowers the energy for qubits pointing in the x–direction (the |+i eigenstate of
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X). Thus the two terms compete, and since Z and X do not commute, the model
is genuinely quantum. The model is 2–local and geometrically local on G.

Two limiting regimes are exactly solvable and already illustrative. In the classi-
cal limit h = 0, all terms commute. Ground states maximize each ZiZj , so for J > 0
they are the two fully aligned product states |0 · · · 0i and |1 · · · 1i, with two–fold
degeneracy. Excitations are domain walls: a bond with anti–aligned neighbors
costs energy 2J (on an open chain; with periodic boundary conditions, domain
walls come in pairs costing 4J total). In the opposite paramagnetic limit J = 0,
each site independently minimizes �hXi, with a unique ground state |+i⌦n where
|+i = (|0i + |1i)/

p
2. A single spin flip to |�i costs energy 2h.

Between these limits, the terms fail to commute, which is the source of genuinely
quantum behavior. The model enjoys a Z2 symmetry generated by the global
“spin–flip” operator

P :=
Y

i2V

Xi,

under which Zi 7! �Zi while Xi 7! Xi. Since [P, HTFIM] = 0, the Hamiltonian
preserves this symmetry. For small h/J the ground space on large graphs approx-
imately breaks the symmetry, exhibiting long–range Z–order. For large h/J the
unique ground state is the symmetric paramagnet. On a one–dimensional chain the
model is exactly solvable (via Jordan–Wigner fermionization), and at zero temper-
ature there is a quantum phase transition in the thermodynamic limit (n ! 1) at
h = J where the energy gap between the lowest and second lowest eigenvalues of H
go to zero. While we will not derive this here, a two–site analysis already captures
the competition of the two terms.

Example 15 (Two–site TFIM). On two qubits,

H2(J, h) = � J Z1Z2 � h (X1 + X2).

Diagonalizing (for instance in the joint eigenbasis of the parity X1X2) yields four
eigenvalues

E 2
n

�
p

J2 + 4h2, �J, +J, +
p

J2 + 4h2
o

.

For J � 0 the ground energy is E0 = �
p

J2 + 4h2, and the gap to the first excited
level is

�(J, h) =
p

J2 + 4h2 � J.

We recover the limits discussed above: �(0, h) = 2h and �(J, 0) = 0 (reflecting
the two–fold degeneracy at h = 0). Already at two sites we see how the transverse
field h lifts the classical degeneracy and stabilizes a unique paramagnet, while the
interaction J favors ferromagnetic order.

On longer chains, the low–energy excitations can be understood in terms of
order and disorder. In the h = 0 limit, excitations are domain walls that can move
freely; turning on a small h allows them to hop and to be created or annihilated in
pairs. In the opposite J = 0 limit, the excitations are independent spin flips. The
Z2 symmetry generated by P forbids a nonzero hZii expectation value in any exact
eigenstate on a finite chain; nevertheless, in the ferromagnetic phase (h/J ⌧ 1)
the ground space is nearly two–fold degenerate and exhibits robust long–range
correlations hZiZji ⇡ 1 for distant i, j.


