
CHAPTER 5

Sample-Optimal Algorithm for State Tomography

In the previous lecture we saw the most basic algorithms for learning quantum
states. While their analysis was simple, the algorithm incurs a dependence on the
Hilbert space dimension d which is far from optimal. Indeed, the total number
of parameters describing an arbitrary mixed state is d2, so intuitively we expect
that the correct sample complexity for state tomography is ⇥(d2/✏), where ✏ is the
target infidelity.1

In this lecture, we show using more sophisticated algebraic tools that with a
di↵erent measurement scheme, one can indeed achieve this optimal sample com-
plexity, up to logarithmic factors. Notably, the algorithm will measure all copies
of the unknown state ⇢ at once, rather than simply measuring every qubit of every
copy one at a time. So the question becomes: what is the POVM {M�} that one
can perform on ⇢⌦N that maximally extracts information about ⇢?

1. Some Forced Moves

There are two symmetries we can exploit in the problem. Firstly, there is the
trivial permutation symmetry: the “dataset” of copies of ⇢ being measured is in-
variant under swapping di↵erent copies around. Additionally, the measurement
should be agnostic to the eigenbasis of ⇢, because we are not making any assump-
tions about it: if the algorithm achieves some level of statistical e�cient for states
in some eigenbasis, they had better be equally statistically e�cient in any other
eigenbasis. Taken together, these two points imply two things about the POVM
{M�} we perform:

• Permutation invariance: Elements of the POVM should be invariant under
conjugation by any permutation operator.

• Rotation equivariance: If M� is the POVM element corresponding to out-
putting �, then MU�U† = (U †)⌦NM�U⌦N for any U 2 U(d).

We will implement such a POVM {M�} in two stages:

(1) Measure ⇢⌦N with a POVM {M̃�} which is both permutationally and ro-
tationally invariant in order to learn the rotationally invariant information
about ⇢, i.e., its eigenvalues

(2) Apply a suitable rotationally equivariant POVM to the post-measurement
state to learn the eigenbasis of ⇢

1The fidelity between two states ⇢,� is defined to be F (⇢,�) , tr(
pp

⇢�
p
⇢), and the infi-

delity is 1 � F (⇢,�). Sometimes fidelity is defined to be the square of our definition, but in the
regime where infidelity is small, these only a↵ect the definition of infidelity by a constant factor.
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There are di↵erent ways of implementing the latter step, but the former step
is rather generic and useful in other quantum learning tasks as well. It goes by the
name of weak Schur sampling, and as we will see, its construction is entirely
predetermined by the symmetries above.

Remark 61. We will assume for convenience throughout this lecture that ⇢ is full
rank. This is just for convenience of prose, as we will be talking about representa-
tions of the general linear group, but the reasoning below can be extended to states
of degenerate rank by taking appropriate limits.

2. Representation Theory Toolkit

The key ingredient behind weak Schur sampling is Schur-Weyl duality, a
fundamental algebraic result that, very roughly speaking, ensures that there is a
unitary Uschur for which

U†

schur⇢
⌦NUschur

is block-diagonal with very particular structure in each diagonal block. As such, we
may assume without loss of generality that our algorithm first performs a projective
measurement to project to the subspace corresponding to one of these diagonal
blocks. Weak Schur sampling is precisely this initial projective measurement, which
we spell out in detail below.

2.1. Basic Notions

Let H , (Cd)⌦N . Here we introduce just enough representation theory to be
able to present Schur-Weyl duality and the full learning algorithm. Representation
theory is the study of groups by associating their elements with linear transfor-
mations. Throughout this lecture, we work exclusively with representations over
complex vector spaces. Given a vector space V , let GL(V ) denote the group of
invertible linear transformations on V .

Definition 62. Given a group G, a (finite-dimensional) representation is given
by a vector space V and a group homomorphism µ : G ! GL(V ), i.e., a map
satisfying µ(gh) = µ(g)µ(h) for all g, h 2 G. We say that µ is a G-representation
over V , or a representation over V if G is clear from context. The dimension of
the representation, denoted dim(µ), is the dimension of V .

We will often refer to a representation by the vector space on which G acts,
with the homomorphism µ being implicitly understood from context. Similarly, we
may write g · v to denote µ(g)v.

In any introductory text on representation theory, one can find a laundry list
of examples, for instance the trivial representation, the standard representation of
GLd, the regular representation of any finite group, the Fourier character repre-
sentation of Zn

2 , etc. The following two representations are most relevant to this
lecture:

Example 63. SN and GLd admit the following representations over (Cd)⌦N , call
them P : SN ! GL((Cd)⌦N ) and Q : GLd ! GL((Cd)⌦N ) respectively. P (⇡) is
the permutation operator on N qudits associated to ⇡ 2 SN , and Q(M) = M⌦d for
M 2 GLd.
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Note that these clearly commute with each other, so we can also define a rep-
resentation of SN ⇥ GLd, which we will denote by µSW, over H via

µSW(⇡, M) = P (⇡)Q(M) .

Definition 64. A representation (µ, V ) is irreducible if there does not exist an
invariant subspace, i.e. a proper subspace U ( V for which µ(g)U = U for all
g 2 G. We sometimes call (µ, V ) an irrep for short.

Like the vector spaces over which they act, representations can be stitched together
using standard operations like direct sum and tensor product.

Definition 65. The direct sum of representations (µ1, V1), . . . , (µm, Vm) of G with
multiplicities a1, . . . , am is the representation (µ, V �a1

1 � · · ·�V �am
m ) for which µ(g)

is given by the block diagonal matrix whose diagonal blocks consist of ai copies of
µi(g) for all i. We will sometimes write µ =

Nm
i=1 ai · µi and V ⇠=

Pm
i=1 ai · Vi.

The tensor product of representations (µ, V ) and (⌫, W ) of G is the represen-
tation (µ ⌦ ⌫, V ⌦ W ) for which

µ ⌦ ⌫(g · h) = µ(g) ⌦ ⌫(h) .

Somewhat confusingly, representations which are reducible need not decompose into
a direct sum of irreps in general. Those that do are said to be semisimple. While
not all representations are semisimple, all of the ones we will care about in this
lecture are. For instance, it can be shown that any representation of SN or Ud is
semisimple – the former is Maschke’s theorem (see e.g. [FH13, Corollary 1.6]),
and the latter is immediate from the fact that if Ud preserves some subspace W ,
then it also preserves the orthogonal complement W?. For the rest of this lecture,
we will work with the implicit understanding that all representations discussed are
semisimple.

Definition 66 (Hom spaces). Given two G-representations µ, ⌫ over spaces V, W ,
a linear map f : V ! W is a G-linear map if it commutes with the action of
G, that is, if ⌫(g)f(v) = f(µ(g)v) for all v 2 V . We denote by HomG(V, W ) the
space of all G-linear maps V ! W . We say that representations µ and ⌫ are
isomorphic, which we denote by V ⇠= W when µ and ⌫ are clear from context, if
there is a G-linear map f : V ! W which is an isomorphism of vector spaces.

The following is an elementary but extremely useful fact about G-linear maps:

Lemma 67 (Schur’s lemma). Let V and W be irreps of G.

(1) If V 6⇠= W , then HomG(V, W ) consists of only the zero map.
(2) If V = W , then HomG(V, W ) consists of all scalar multiples of the identity

map.

Proof. For the first part, suppose to the contrary that there is a nonzero G-
linear map f : V ! W . If it has a nontrivial kernel V 0 ( W , then note that
f(g · v0) = g · f(v0) = 0, so the kernel is stable under the action of G, contradicting
the assumption that V is an irrep. So f is injective. An identical argument for the
image of f shows that f is surjective, completing the proof of the first part.

For the second part, we need to prove that apart from scalar multiples of the
identity, there are no other elements in HomG(V, V ). Let f 2 HomG(V, V ), and
consider f 0 , f � �IdV for any eigenvalue � of f . As the sum of G-linear maps is
G-linear, f 0 is G-linear, and furthermore it has nontrivial kernel as it vanishes on
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the eigenvector of f associated to �. But its kernel cannot be a proper subspace
of V or, as in the proof of the first part, this would contradict the fact that V is
an irrep. So the kernel of f 0 must be all of V , implying that f 0 ⌘ 0 and thus that
f = �IdV as claimed. ⇤
Finally, an important object in the study of representations is their associated
characters, which basic information about the representation like their dimension.

Definition 68 (Characters). Given a G-representation over V , its character is
the map � : G ! C given by �(g) = tr(µ(g)). Note that if g is the identity element
id, then �(id) = dim(V ).

2.2. Representation Theory of the Symmetric Group

Here we give a complete classification of all irreps of the symmetric group.
We begin with a useful shift in perspective. An equivalent way to think about

representations of finite groups G like the symmetric group is in terms of modules
over the group algebra associated to G.

Definition 69 (Group algebras). Given a finite group G, the associated group al-

gebra C[G] is the vector space over C of formal linear combinations
P

g2G agg for
ag 2 C, additionally equipped with the multiplication operation (

P
g2G agg)(

P
h2G bhh) =P

g,h2G agbh · gh.
Any G-representation µ over V naturally gives rise to an algebra homomor-

phism C[G] ! GL(V ) by extending linearly; the latter equips the vector space V
with the structure of a C[G]-module, and sub-representations of µ then correspond
to sub-modules of V . This identification also goes in the reverse direction: any
such algebra homomorphism gives rise to a G-representation by restricting to the
elements G ⇢ C[G].

We now define the central objects in the representation theory of the symmetric
group.

Definition 70 (Young tableaux). A Young diagram is a sequence of rows of
boxes of nonincreasing length, like the following:

Its shape is the tuple of row lengths; for example, the shape of the above is (3, 3, 1).
A Young tableau T with entries in [d] is a Young diagram where each box is

labeled with a number from [d], e.g.

1 5 3

4 2 2

5

The Young tableau with canonical labeling is given by labeling the entries from
left to right and top to bottom with the numbers 1, 2, · · · in increasing order.

A Young tableau is said to be semi-standard if every row consists of entries in
non-decreasing order, and if every column consists of entries in strictly increasing
order, e.g.,
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1 1 3

2 3 4

5

It is further said to be standard if the rows are also strictly increasing, though we
will not use this notion in this lecture.

Any Young diagram is naturally associated with a partition via its shape: for
instance � = (3, 3, 1) is a partition of N = 7. We denote such a partition with the
notation � ` [N ]. If the partition/shape consists of m entries and we refer to the
j-th entry of � for j > m, by default we set �j = 0.

Given a partition � = (�1, . . . , �m) ` [N ], we can associate a probability distri-
bution over [m] which places mass �i/N on element i. We will refer to the vector
of probabilities (�1/N, . . . , �m/N) by �.

Definition 71 (Young symmetrizer). Let T be a Young tableau. Define PT ✓
SN (resp. QT ✓ SN ) to consist of permutations which preserve the rows (resp.
columns) of T . Define the group algebra elements aT , bT 2 C[SN ] by aT , P

p2PT
p

and bT , P
q2QT

sgn(q)q, and define the corresponding Young symmetrizer to

be cT , aT bT .
If T is the canonical labeling for shape �, we use a�, b�, c� to denote aT , bT , cT .

The Young symmetrizer is ultimately just some cleverly chosen linear combination
of permutation operators, but it will play a central role not just in the classifica-
tion of the irreps of the symmetric group, but also in our characterization of the
representation µSW from Example 63.

Definition 72 (Specht module). Define the Specht module

V� , C[SN ]c� .

In this section, our goal is to show that the irreps of SN are precisely the Specht
modules for di↵erent � ` [N ]. First, let us get some intuition for what they look
like:

Example 73. Consider the case of N = 3, for which there are three possible par-
titions: (3), (2, 1), (1, 1, 1). When the partition is (3), the corresponding Young
tableau with canonical labeling is

1 2 3

and aT is a sum over all permutations in S3, while bT is the identity. The Young
symmetrizer in this case is the sum over all permutations, and the Specht module is
simply the line spanned by

P
⇡ ⇡. One can see that this is simply the 1-dimensional

trivial representation that maps all group elements to the identity.
When the partition is (1, 1, 1), the corresponding Young tableau with canonical

labeling

1

2

3

and the Young symmetrizer is given by
P

⇡ sgn(⇡)⇡. The Specht module is again
just the line spanned by this element, and one can see that this is the 1-dimensional
sign representation that maps all group elements to their sign.
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When the partition is (2, 1), the corresponding Young diagram is

1 2

3

and aT is the sum of the identity permutation id and ⌧12, the transposition of
elements 1 and 2, while bT is the di↵erence between the identity and ⌧13, the trans-
position of elements 1 and 3. The Young symmetrizer is given by

c� = (id + ⌧12)(id � ⌧13) = id + ⌧12 � ⌧13 � ⇡ ,

where ⇡ is the permutation (1 7! 2, 2 7! 3, 3 7! 1). A calculation shows that the
Specht module in this case is two-dimensional, spanned by c� and ⌧13c�, and is
in fact isomorphic to the following representation, sometimes called the standard
representation. Consider the two-dimensional subspace of R3 given by vectors with
coordinates summing to zero. There is a natural action of S3 on this space, i.e.,
permuting the coordinates of such a vector keeps it in that subspace.

One would be hard pressed to come up with other irreps of S3, and indeed there
are none: as we will show, the Specht modules make up all irreps of S3 up to
isomorphism!

Lemma 74. Let T be a Young tableau. For any g 2 C[SN ], aT gbT is a multiple of
cT . In particular, cTC[SN ]cT ✓ CcT .

Proof. It su�ces to show this for g = ⇡ for ⇡ 2 SN . We have

aT ⇡bT =
X

p2PT ,q2QT

sgn(q)p⇡q .

If ⇡ = pq for p 2 PT , q 2 QT , then aT ⇡bT = sgn(q)cT as desired.
We will show that for ⇡ 62 PT QT , aT ⇡bT = 0. To show this, we show there is

a transposition p0 2 PT for which q0 , ⇡�1p0⇡ 2 QT . In this case, ⇡ = p0⇡q0, so

aT ⇡bT =
X

p2PT ,q2QT

sgn(q)pp0⇡q0q = �
X

p2PT ,q2QT

sgn(q)p⇡q = �aT ⇡bT = 0 ,

and we would be done (note that in the penultimate step we used the fact that
sgn(qq0) = sgn(q)sgn(q0) = sgn(q)sgn(p0) = �sgn(q) as p0 is a transposition).

To show the existence of the transposition p0, define T 0 by mapping every entry
x in T to ⇡(x). We want to show there are two numbers x, y which appear in the
same row of T and the same column of T 0. If to the contrary such x, y do not exist,
then we can shu✏e the entries in each column of T 0 so that the first row of T 0 is
the same as the first row of T up to permutation. Then we can proceed to shu✏e
the entries in each column of T 0, keeping the first row fixed, so that the second row
agrees with that of T up to permutation. Continuing in this fashion, we end up
with permutations p 2 PT and q0 2 QT 0 = ⇡QT ⇡�1 for which p ·T = q0 ·T 0. Writing
q0 = ⇡q⇡�1 for q 2 QT , we find that p ·T = ⇡q⇡�1T 0 = ⇡q ·T , so ⇡ = pq�1 2 PT QT ,
a contradiction. ⇤

Next, we re-use the proof strategy in the last two paragraphs of the proof of
Lemma 74 to show the following:

Lemma 75. Let �, µ be partitions for which � > µ in lexicographic ordering. Then
a�gbµ = 0 for all g 2 C[SN ]. In particular, c�C[SN ]cµ = 0.
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Proof. As before, it su�ces to show this for g = ⇡. Let T and T̃ denote the
tableaux corresponding to �, µ. By the reasoning in Lemma 74, letting T 0 denote
the result of mapping every entry x in T̃ to ⇡(x). As in the proof of Lemma 74, we
want to show there are two numbers x, y which appear in the same row of T and
the same column of T 0. Suppose to the contrary.

If �1 > µ1, then because there are strictly fewer than �1 columns in T 0, some
column must contain two numbers from the first row of T , a contradiction. If
�1 = µ1, then as in the proof of Lemma 74, we can shu✏e the entries in the
columns of T 0 and in the first row of T so that T and T 0 have identical first row,
and we can recurse on the subsequent rows until we reach a row i for which �i > µi,
inducing the desired contradiction. ⇤

This yields the following characterization for the irreps of SN .

Lemma 76. (i) V� is an irrep of SN for any � ` [N ].
(ii) For any distinct partitions �, µ ` [N ], V� and Vµ are not isomorphic.
(iii) Any irrep of SN is isomorphic to some V�.

Proof. See pset 2 for the proofs of (i) and (ii).
The proof of (iii) follows from the standard fact that the number of irreps

of any finite group is equal to the number of conjugacy classes (see e.g. [FH13,
Proposition 2.30]), and the fact that the conjugacy classes of SN are in one-to-one
correspondence with the partitions � ` [N ]. ⇤

Lemma 77 (Hook length formula). Given an entry in a Young tableau T of shape
�, let its hook length denote the number of boxes either directly below it or directly
to its right. Then dim(V�) is n! divided by the product of the hook lengths of all
entries T . In particular,

dim(V�)  eNH(�) .

Proof. The first part is a standard fact whose proof would take us too far afield.
Recall from Lemma 74 that cT is idempotent up to scaling, that is, c2T = nT cT for
some constant nT . The hook length formula is equivalent to the claim that nT is
given by the product of hook lengths. A proof of this can be found, e.g., in [Gri25,
Section 5.11.2].

As for the inequality in the second part of the lemma, note that the hook length
of the entry in the i-th row and j-th column is at least �i � j + 1, so the product
of hook lengths in row i is at least �i!. We thus have

dim(V�)  N !Q
i �i!

 eNH(�) ,

where in the last step we used the elementary fact that the logarithm of a multi-
nomial coe�cient

� N
�1···�m

�
is upper bounded by N times the entropy of the dis-

tribution with probability mass function given by �, see e.g. [CS+04, Lemma
2.2]. ⇤

In short, the irreps of the symmetric group are in one-to-one correspondence with
the Young diagrams � ` [N ]. Remarkably, this is also the case in a certain sense
for GL(Cd), and furthermore these irreps of GL(Cd) are intimately tied to those
of a SN . This is the content of Schur-Weyl duality, which we discuss in the next
section.
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2.3. Schur-Weyl Duality

Recall the representation µSW defined in Example 63. The following decompo-
sition result is the key ingredient behind the learning algorithm we will describe in
the next section.

Lemma 78 (Isotypic decomposition). The representation µSW of SN ⇥ GLd over
H decomposes as

H ⇠=
M

�`[N ]

V� ⌦ S�V� ,

where the Schur functor S�V� , HomSN (V�, H) is equipped with the natural GLd-
action of composition.

Proof. The proof is essentially just symbol pushing, but the intuition is that every
irrep V� appears with a certain multiplicity in the decomposition of µSW as a SN -
representation, and the spaces S�V� are simply there to track these multiplicities.
This argument is not specific to SN , GLd and only uses the fact that their actions
commute.

First note that S�V� is a valid representation of GLd: given f 2 HomSN (V�, H)
and g 2 GLd, we have g · f = g � f 2 HomSN (V�, H) as

(g � f)(⇡ · v) = g(⇡ · f(v)) = ⇡ · (g � f)(v)

for any v 2 V�, ⇡ 2 SN , where the first step follows by the fact that f is SN -linear,
and the second step follows by the fact that the actions of SN and GLd on H
commute.

Now consider the map � : ��V� ⌦ S�V� ! H given by linearly extending the
maps v ⌦ f 7! f(v) for v 2 V�, f 2 S�V�. One can readily check that this map is
SN ⌦ GLd-linear. It remains to show it is bijective.

To show surjectivity: if we consider the decomposition of SN -representations
H ⇠= ��V �m�

� , then by Schur’s lemma, HomSN (V�, H) is spanned by the embed-
dings ◆�1 , . . . , ◆�m�

: V� ! H of V� into the m� copies of V� within H. Now observe
that �(V� ⌦ {◆�j}) = ◆�j (V�) = V�, so the image of � contains every component in

the decomposition H ⇠= ��V �m�
� , establishing surjectivity.

Finally, � is bijective because the domain and image have the same dimensionP
� m�dim(V�). ⇤

The following gives a simple characterization of the Schur functors in terms of
Young symmetrizers, using the fact that Young symmetrizers are idempotent up to
a scaling.

Lemma 79. S�V�
⇠= c� · H

Proof. See pset 2. ⇤

Remark 80 (Schur-Weyl duality). A beautiful fact is that these GLd-representations
S�(V�) are actually irreps; this is the content of the famous Schur-Weyl duality.
This is a consequence of two facts that we will not prove:

• Not only do the actions of SN and GLd on H commute with each other, but any
operator that commutes with Q(M) for all M 2 GLd must be a linear combination
of the operators {P (⇡)}⇡2SN .


