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• The double commutant theorem: in situations where one has an isotypic
decomposition like in Lemma 78, this states that one action being the commutant
of the other in the sense of the above bullet point allows one to further deduce
that the Schur functors in the isotypic decomposition are irreps.

The first fact has a remarkably elementary proof, see https://math.univ-lyon1.
fr/⇠aubrun/recherche/schur-weyl.pdf. The second fact can be found in any stan-
dard representation theory text, e.g. [EGH+09, Theorem 5.18.1].

At this juncture, what we really need is a user-friendly description of the charac-
ters of the representations S�(V�). As we will see, these are given by the Schur
polynomials s�. This will follow from the following lemmas:

Lemma 81. Let |~ii = |i1i ⌦ · · · ⌦ |iN i be a tensor product of basis states, i.e.
i1, . . . , iN 2 [d]. For every j 2 [d], suppose it appears ⌫j times among i1, . . . , iN .
Then for any � ` [N ] and any diagonal matrix D = diag(x1, . . . , xd), we have

D⌦Nc� |~ii = x⌫1
1 · · · x⌫d

d c� |~ii .

Proof. For any ⇡ 2 SN , note that D⌦NP (⇡) |~ii = x⌫1
1 · · · x⌫d

d . As c� is a linear
combination of P (⇡)’s, the claim immediately follows. ⇤
Definition 82. Given �, �0 ` [N ], we say that � majorizes �0, denoted �0 � �, ifP

ij �0

i 
P

ij �i for all j.

Lemma 83. Let ⌫j denote the number of times j appears among i1, . . . , iN . Let
⌫sorted ` [N ] denote the partition given by sorting the entries of ⌫ in decreasing
order.

Then c� |~ii = 0 if ⌫sorted 6� �. As a special case, this implies that c� |~ii = 0 if �
has more than d rows.

Proof. We can associate to |~ii a Young tableau T with shape � by filling in the
entries of~i from left to right and top to bottom. If any column of T has a repeated
entry, then c� |~ii = 0.

The condition that ⌫sorted 6� � implies that there is some j for which
P

ij ⌫sorted
i >P

ij �i, which implies that some column of T has a repeated entry by pigeonhole
principle. ⇤
Corollary 84. Let q� : GLd ! GL(S�V�) denote the GLd-representation associated
to the Schur functor S�V�. For any M 2 GLd with eigenvalues x1, . . . , xd, we have

tr(q�(M)) =
X

SSYT T

xT , s�(~x) ,

where the sum ranges over all semi-standard Young tableaux with shape � over
alphabet [d], and xT denotes the monomial x⌫1

1 · · · x⌫d
d where ⌫j is the number of

occurrences of entry j in T . The polynomials s� are called the Schur polynomials.

Proof. A fact we will need but will not prove is that c� |~ii for any |~ii which
does not correspond to a semi-standard Young tableau can be expressed as a linear
combination of c� |~ji for |~ji’s which do correspond to semi-standard Young tableau.
This is a nontrivial fact, a consequence of the so-called Garnir relations, whose proof
is out of the scope of these notes. The upshot of this fact is that the collection of
{c� |~ii} for all |~ii which do correspond to semi-standard Young tableaux spans S�V�,
in fact, forms a basis.

https://math.univ-lyon1.fr/~aubrun/recherche/schur-weyl.pdf
https://math.univ-lyon1.fr/~aubrun/recherche/schur-weyl.pdf
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Next, note that any character � of a representation µ of GLd only depends on
the eigenvalues of the input: if M 2 GLd has diagonalization M = U�1DU , then
�(M) = �(U�1DU) = tr(µ(U)�1µ(D)µ(U)) = tr(µ(D)) = �(D).

So we may assume that M in the corollary is diagonal, in which case Lemmas 81
and 83 imply that

tr(q�(M)) =
X

⌫:⌫sorted��

K�⌫x⌫1
1 · · · x⌫d

d ,

where ⌫ ranges over all ordered partitions of [N ] and K�⌫ denotes the number of
semi-standard Young tableaux with shape � over alphabet [d] such that each j 2 [d]
occurs ⌫j times.2 The result then follows from the fact that K�⌫ = 0 if ⌫sorted 6� �,
which we do not prove here. ⇤

2.4. Schur Polynomial Facts

We will need two simple facts about the Schur polynomials.

Lemma 85. For any partition � ` [N ] with at most d rows,

dim(S�V�) = s�(1d)  NO(d2) .

Proof. The first equality follows from the fact that s�(1d) = tr(q�(Id)) by Corol-
lary 84, together with the fact that the character of a representation evaluated at
the identity is the dimension of the representation.

The inequality is typically proved by invoking the identity

s�(1d) =
Y

1i<jd

�i � �j + j � i

j � i

together with the fact that 0  �i � �j  N , but the proof for this identity
is nontrivial. Instead, we can prove the claimed bound by the following simple
combinatorial argument. Recall that s�(1d) counts the number of SSYT of shape
� with entries from [d]. Given any such SSYT T , we can consider the sequence
of SSYT’s (Tj) given by removing all blocks with an entry larger than j. Note
that the shapes �j of these SSYT’s can be used to uniquely recover the original
T , because the di↵erence between Tj and Tj�1 specifies the locations of the j
entries withint T . The number of such sequences of shapes (�j) can be naively

bounded by NO(d2). ⇤
Lemma 86. Given two d-dimensional density matrices �, ⇢, for any partition � `
[N ] with at most d rows,

tr(q�(⇢�))  dim(S�V�) · e�2NH(�)F (⇢, �)2N .

Here � denotes the distribution over [d] with probability mass function given by
(�i/N)i2[d], and H(·) denotes Shannon entropy.

Proof. Let X be a psd matrix with eigenvalues x1 � · · · � xd sorted in non-
increasing order, and define xi = xi/tr(X).

By Fact 87 and the fact that there are dim(S�V�) monomials in the definition
of s�, we can bound

tr(q�(X2)) = s�(x2
1, . . . , x

2
d)  dim(S�V�) · x2�1

1 · · · x2�d
d .

2Note that if ⌫ and ⌫0 are equal up to permutation of entries, K�⌫ = K�⌫0 , though this is not a

priori clear.
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Note that

x2�1
1 · · · x2�d

d = x2�1
1 · · · x2�d

d · tr(X)2N

= exp(2NEi⇠� log xi) · tr(X)2N

 exp(�2NH(�)) · tr(X)2N ,

where in the last step we used Gibbs’ inequality.
To conclude the proof, take X =

p
�1/2⇢�1/2 so that tr(X) = F (⇢, �). As the

Schur polynomials are characters, tr(q�(⇢�)) = tr(q�(�1/2⇢�1/2)) = tr(q�(X2)),
concluding the proof. ⇤
The above argument uses the following elementary fact:

Fact 87. Given any partitions ⌫ � � with at most d rows, and any nonnegative
reals x1 � · · · � xd,

x⌫1
1 · · · x⌫d

d  x�1
1 · · · x�d

d .

Finally, we need the following simple lower bound on the Schur polynomials:

Lemma 88. For any � ` [N ] s�(�) � e�NH(�).

Proof. Every Schur polynomial is a sum of monomials and thus lower bounded
by any single monomial. Consider the SSYT T with shape � that has �j j’s in the
j-th row. Then

s�(�) = �
T

= �
N�1

1 · · · �N�d

d = e�NH(�)

as claimed. ⇤

3. Weak Schur Sampling

As discussed at the beginning of the previous section, the upshot of the isotypic
decomposition in Lemma 78 is that there is a certain unitary Uschur over H that
block-diagonalizes all states of the form ⇢⌦N . More generally, for any ⇡ 2 SN and
M 2 GLd, we have

UschurP (⇡)Q(⇢)U†

schur =
M

�`[N ]

p�(⇡) ⌦ q�(M) ,

where p� is the SN -representation of ⇡ acting on the Specht module V�
⇠= C[SN ]·c�,

and q� is the GLd-representation whose character is given by the Schur polynomial
s�. In particular, when ⇡ = Id and M = ⇢, then we obtain the block decomposition

Uschur⇢
⌦NU†

schur =
O

�`[N ]

IdV� ⌦ q�(⇢) .

The reason this block decomposition is helpful is that we have a good understanding
of the blocks q�(⇢) and how they behave when the copies of ⇢ get rotated.

The first step of our learning algorithm is thus to rotate the input ⇢⌦N into the
basis prescribed by Uschur and perform a projective measurement onto one of these
blocks, a procedure called weak Schur sampling.

Definition 89 (Weak Schur Sampling). Let ⇢ be a density matrix with eigenvalues
�
⇤

1 � · · · � �
⇤

d � 0.
Let ⇧� denote the projector to the isotypic component V� ⌦ S�V�. Weak Schur

sampling is the following procedure:
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(1) Perform a projective measurement {⇧�}� on ⇢⌦N to obtain a state in V�⌦S�V�

with probability

tr(IdV� ⌦ q�(⇢)) = dim(V�) · s�(�
⇤

) .

The distribution over partitions � ` [N ] with this probability mass function is
called the Schur-Weyl distribution, denoted SWN (�

⇤

).
(2) Trace out the V� register, resulting in the state with unnormalized density ma-

trix q�(⇢). Note that the trace of this is s�(�
⇤

) by Corollary 84, so the normal-
ized density matrix is

⇢̃ , q�(⇢)/s�(�
⇤

) .

Intuitively, the partition � obtained by weak Schur sampling gives us a rough es-
timate � = (�1/N, . . . , �N/N) of the spectrum �

⇤

of ⇢. This should be thought
of as the quantum analogue of the classical algorithm for learning discrete distri-
butions: given N samples from a distribution over [d] which places mass �

⇤

i on
element i, the optimal estimator for �

⇤

is to output the empirical histogram
� = (�1/N, . . . , �N/N), where �i is the number of samples in the dataset that are
equal to i.

When learning quantum states however, there is a crucial missing piece even
after we have estimated the spectrum of ⇢: estimating the eigenvectors of ⇢. This
is where we will leverage the Schur polynomial estimates from the previous section.

4. Pretty Good Measurement

With the spectrum estimate � and the post-measurement state ⇢̃ = q�(⇢)/s�(�
⇤

)
in hand, a natural approach for learning the eigenbasis for ⇢ would be to sample
a random unitary U and “measure ⇢̃” with the operator Udiag(�)U† in each copy
in our dataset. Of course, there is a type mismatch: our dataset is no longer an
element of H, so measuring ⇢̃ with Q(Udiag(�)U †) doesn’t quite make sense. But
because q� is an irrep inside the representation Q(·), we know how Q(Udiag(�)U†)
acts on ⇢̃, namely via q�(Udiag(�)U†). So by “measuring ⇢̃ with Udiag(�)U †,”
we really mean measuring with the operator q�(Udiag(�)U†). Up to a normaliz-
ing constant, this is now entirely well-defined and provides the desired rotationally
equivariant POVM needed for the second stage of our algorithm.

Lemma 90. The POVM with elements

dim(S�V�)

s�(�)
· q�(Udiag(�)U †) dU (24)

is a valid POVM.

Proof. Note that this ensemble is invariant under conjugation by any unitary: for
any W 2 Ud we have q�(W ) · q�(Udiag(�)U †)q�(W †) = q�(WUdiag(�)U †W †), and
the Haar measure over Ud is invariant under left-multiplication by W by definition.
So by irreducibility of q�, to show that the POVM elements integrate to IdS�V� , it
su�ces to verify that their trace integrates to dim(S�V�). This follows because

tr(q�(Udiag(�)U †)) = tr(q�(diag(�))) = s�(�) . ⇤

The pseudocode for our final learning algorithm is as follows:
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Algorithm 1: OptimalTomography(⇢)

Input: N copies of unknown d-dimensional state ⇢
Output: Estimate ⇢̂

1 Perform weak Schur sampling on ⇢⌦N (Definition 89) to obtain � ` [N ]
and post-measurement state ⇢̃.

2 Measure ⇢̃ with the POVM in Eq. (24) to obtain U .

3 return ⇢̂ = Udiag(�)U†

With all of the machinery from Section 2, the proof that this works ends up
being remarkably simple. The following shows that the further ⇢̂ = Udiag(�)U† is
from ⇢, the less likely it is to output ⇢̂.

Lemma 91. The infinitesimal probability of obtaining � in the first step of Opti-

malTomography and U in the second step is at most NO(d2)·F (Udiag(�)U†, ⇢)2N dU .

Proof. Let us first compute the infinitesimal probability of observing U in the
second stage of the algorithm, conditioned on measuring the post-measurement
state ⇢̃:

dim(S�V�)

s�(�)s�(�
⇤

)
·tr(q�(Udiag(�)U†)·q�(⇢)) dU =

dim(S�V�)

s�(�)s�(�
⇤

)
·tr(q�(⇢Udiag(�)U†)) dU ,

where we used the fact that q� is a GLd-representation. Recall that the probability
of getting � and ⇢̃ from weak Schur sampling is dim(V�) ·s�(�

⇤

), so the infinitesimal
probability that the algorithm outputs a particular ⇢̂ = Udiag(�)U † is

dim(S�V�) dim(V�) · tr(q�(⇢Udiag(�)U†))

s�(�)
dU .

By Lemmas 77, 85, 86, and 88, this is at most

NO(d2)F (Udiag(�)U †, ⇢)2N dU

as claimed. Note the fortuitous cancellation of the entropy terms. ⇤
We are now ready to prove the main result.

Theorem 92. For any ✏ > 0, there is N = Õ((d2 + log 1/�)/✏) such that given N
copies of ⇢, OptimalTomography(⇢) outputs an estimate ⇢̂ satisfying F (⇢, ⇢̂) �
1 � ✏ with probability at least 1 � �.

Proof. There are  NO(d) partitions � ` [N ] with at most d rows, and
R

dU = 1,
so the total probability contributed by (�, U) for which F (Udiag(�)U†, ⇢) < 1 � ✏

is at most NO(d2)(1 � ✏)2N . Provided N = ⌦((d2 log N + log 1/�)/✏), this is upper
bounded by � as desired. ⇤
The bound is still o↵ by a log(d/✏) factor, and it is still open whether this can be
tightened to match the best known lower bound of ⌦((d2 + log 1/�)/✏).


