
CHAPTER 6

Predicting properties using classical shadows

In the previous lecture, we saw how to achieve sample-optimal quantum state
tomography using multi-copy measurements and tools from representation theory.
While this approach is optimal for learning a full description of the state ⇢, the
sample complexity of O(d2) for achieving a constant error is daunting for existing
quantum devices with a hundred or more qubits. Furthermore, the required en-
tangled measurements across many copies of ⇢ are not readily available in many
quantum platforms.

In many practical scenarios, however, we do not actually need a full description
of the quantum state. Instead, we are often interested in predicting a number of
properties, such as the expectation values tr(Oi⇢) for a given list of observables
{Oi}M

i=1. This shifts the goal from learning the state to predicting its properties.
This task, first introduced by Aaronson [Aar18], is called shadow tomography
and will be the subject of the next two lectures.

Remarkably, there is an e�cient method for this task that relies only on simple,
single-copy measurements. The number of measurements required will depend not
on the Hilbert space dimension d, but only on the number of properties M we wish
to predict. Furthermore, the dependence on M will be very favorable. An initial
version of the protocol for k-local Pauli observables called quantum overlapping
tomography was developed in [CW20] and refined in [EHF19]. This was later
absorbed into the more general framework of classical shadows, proposed in
[HKP20], which enables the prediction of a larger class of observables with a more
flexible protocol (which was partially anticipated by the work of [Wri16, Chapter
5.1]). Classical shadow tomography is now widely studied and used, and is the
subject of this section.

1. How to Predict Properties?

Before introducing the classical shadow formalism, let us consider a straight-
forward approach that directly measures each observables Oi on fresh copies of
⇢. Given a set of M observables {Oi}M

i=1, the strategy estimates each expectation
value tr(Oi⇢) independently by repeatedly measuring observable Oi.

For simplicity, assume each observable is normalized such that its eigenvalues
lie in [�1, 1]. A measurement of such an observable yields an outcome � with
probability p�, and the expectation value is

P
�p�. Assume the total number

of copies of ⇢ is N . To estimate the expectation value, one can perform N/M
independent measurements of Oi on N/M fresh copies of the state ⇢, yielding

outcomes {�1, . . . ,�N/M}. The empirical mean ôi = M
N

PN/M
j=1 �j serves as the

estimate for tr(Oi⇢). To estimate all M properties, we repeat this process for each
observable. A pseudocode for this algorithm is given in Algorithm 2.
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98 6. PREDICTING PROPERTIES USING CLASSICAL SHADOWS

Algorithm 2: DirectMeasurement(N , ⇢, {Oi}M
i=1)

Input: Access to N copies of state ⇢, observables {Oi}M
i=1

Output: Estimates {ôi}M
i=1

1 for i = 1, . . . , M do
2 Initialize an empty list ⇤i;
3 for j = 1, . . . , N/M do
4 Take a fresh copy of ⇢;
5 Measure the observable Oi to get an outcome �j ;
6 Append �j to ⇤i;
7 end

8 Compute the empirical average ôi = M
N

P
�2⇤i

�;

9 end
10 return {ôi}M

i=1

This direct approach is simple but can be ine�cient, especially when M is large.
Its sample complexity is given by the following lemma.

Lemma 93 (Sample Complexity of Direct Measurement). To estimate M observ-
ables {Oi}M

i=1 with kOik1  1 to an additive error ✏ with total failure probability
at most �, the direct measurement strategy requires a total of

N = O
✓

M log(M/�)

✏2

◆

quantum measurements.

Proof. Consider a single observable Oi. A single measurement yields a random
outcome Xj with E[Xj ] = tr(Oi⇢) and |Xj |  1. We take N/M samples and

compute the empirical mean ôi = M
N

PN/M
j=1 Xj . By Hoe↵ding’s inequality for

bounded random variables, the probability of a large deviation is bounded by:

Pr[|ôi � tr(Oi⇢)| > ✏]  2 exp

✓
� 2(N/M)✏2

(1 � (�1))2

◆
= 2 exp

✓
� (N/M)✏2

2

◆
.

To ensure this failure probability is less than some �0, we must choose (N/M)

such that 2e�(N/M)✏2/2  �0, which means (N/M) � 2
✏2 log(2/�0). Thus, for each

observable, we need (N/M) = O(log(1/�0)/✏2) measurements. To bound the total
failure probability for all M observables by �, we use a union bound. We set the
failure probability for each individual observable to �0 = �/M . The number of
measurements for each observable is then:

(N/M) = O
✓

log(M/�)

✏2

◆
.

Since we perform this procedure independently for each of the M observables, the
total number of measurements is N = O(M log(M/�)/✏2). ⇤

The linear dependence on M makes this approach costly when many properties
are of interest. The classical shadow formalism shows that an exponential improve-
ment is possible, replacing the linear scaling in M with a logarithmic scaling.
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2. Classical Shadow Formalism

The core of the classical shadow formalism is to use a tomographically complete
set of randomized, single-copy measurements to construct an unbiased estimator
for the unknown state ⇢. This estimator, which we call a classical snapshot, is a
classical data structure representing a 2n ⇥ 2n-size Hermitian matrix that can be
stored and manipulated on a conventional computer.

2.1. Measurement Channel and Classical Snapshot

Definition 94 (Measurement Channel and Classical Snapshot). Let U be an en-
semble of n-qubit unitary operators. Let ⇢ be an unknown n-qubit quantum state.
Consider the procedure of drawing U ⇠ U , applying U to the state ⇢, and measuring
U⇢U † in the computational basis to obtain a bitstring b 2 {0, 1}n. This defines a
quantum channel M:

M(⇢) = EU⇠U

2

4
X

b2{0,1}n

tr(|bihb|U⇢U†) · U†|bihb|U

3

5 .

If U is tomographically complete, M is invertible. For a single experimental out-
come (U, b̂), the classical snapshot is defined as

⇢̂ , M�1(U †|b̂ihb̂|U).

The classical snapshot ⇢̂ can be stored on a classical computer by storing a classical
description for the unitary U (e.g., a circuit description) and the n-bit string b̂. A
set of N snapshots, S(⇢; N) = {⇢̂1, . . . , ⇢̂N}, forms the classical shadow of ⇢.

Lemma 95. The classical snapshot ⇢̂ is an unbiased estimator of the state ⇢.

Proof. By linearity of expectation,

E[⇢̂] = EU,b̂[M
�1(U†|b̂ihb̂|U)] = M�1

⇣
EU,b̂[U

†|b̂ihb̂|U ]
⌘

.

The expectation over the measurement outcome b̂ for a fixed U is

Eb̂[U
†|b̂ihb̂|U ] =

X

b2{0,1}n

tr(|bihb|U⇢U †) · U†|b̂ihb̂|U.

Plugging this in gives

E[⇢̂] = M�1

0

@EU⇠U

2

4
X

b2{0,1}n

tr(|bihb|U⇢U†) · U†|bihb|U

3

5

1

A = M�1(M(⇢)) = ⇢,

which concludes the proof. ⇤
Because of the unbiased property, we can think of ⇢̂ as a classical surrogate of

the unknown quantum state ⇢. To predict an expectation value tr(O⇢), we use the
single-shot estimator ô = tr(O⇢̂). By linearity of expectation value, we have

E[ô] = tr(OE[⇢̂]) = tr(O⇢).

However, there will be statistical fluctuation in ô that causes any single-shot es-
timator ô to deviate away from the expectation value tr(O⇢). To understand the
statistical fluctuation, we need to look at the variance of ô:

Var[ô] = E[ô2] � E[ô]2.
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If the variance is large, the sample complexity N required to achieve a given pre-
cision must be larger, and vice versa. To bound the variance of ô, we need to first
establish the basic properties of the measurement channel M.

Lemma 96 (Properties of the Measurement Channel). The channel M and its
inverse M�1 have the following properties:

(i) M is trace-preserving, i.e., tr(M(X)) = tr(X) for any operator X.
(ii) M and M�1 are self-adjoint with respect to the Hilbert-Schmidt inner

product, hA, BiHS = tr(A†B). This means that for any operators A and
B, the channel can be moved from one side to the other:

hA, M(B)iHS = hM(A), BiHS .

(iii) M and M�1 are unital, i.e., M(Id) = M�1(Id) = Id.
(iv) The classical snapshot ⇢̂ has unit trace, tr(⇢̂) = 1.

Proof. (i) We take the trace of M(X) and use the linearity and cyclic property
of the trace:

tr(M(X)) = tr

 
EU

"
X

b

tr(|bihb|UXU †)U†|bihb|U
#!

= EU

"
X

b

tr(|bihb|UXU †)tr(U †|bihb|U)

#

= EU

"
tr

  
X

b

|bihb|
!

UXU †

!#
= EU [tr(Id · UXU †)] = tr(X).

This completes the proof of (i).

(ii) We verify the self-adjoint condition for Hermitian operators A, B, where the
inner product is tr(AB) = tr(A†B).

tr(AM(B)) = tr

 
A · EU

X

b

tr(|bihb|UBU†)U †|bihb|U
!

= EU

X

b

tr(|bihb|UBU†)tr(AU†|bihb|U)

= EU

X

b

hb|UBU†|bihb|UAU†|bi.

This final expression is symmetric in A and B, so tr(AM(B)) = tr(BM(A)) =
tr(M(A)B), proving M is self-adjoint. To show M�1 is self-adjoint, let X =
M�1(A) and Y = M�1(B). We must show tr(AM�1(B)) = tr(M�1(A)B), which
is equivalent to showing tr(M(X)Y ) = tr(XM(Y )). This is true because we have
shown that M is self-adjoint.

(iii) This proof proceeds in three steps. First, we show that the adjoint of a trace-
preserving (TP) map is unital. Second, we apply this to M. Third, we extend
the property to M�1. Consider any TP map �. The adjoint �† is defined by
tr(A†�(B)) = tr((�†(A))†B) for all A, B. To show �† is unital, we must show
�†(Id) = Id. We can prove this by showing that for any arbitrary matrix X,
tr(X†�†(Id)) = tr(X†Id). Let A = Id and B = X in the adjoint definition:

tr((�†(Id))†X) = tr(Id†�(X)) = tr(�(X)).
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Since � is trace-preserving, tr(�(X)) = tr(X). Thus we have:

tr((�†(Id))†X) = tr(X) = tr(Id · X).

Since this equality holds for all X, it implies (�†(Id))† = Id, and therefore �†(Id) =
Id. From (i), we know M is trace-preserving. Therefore its adjoint, M†, must be
unital. From (ii), we know M is self-adjoint, so M = M†. Combining these, M
itself must be unital, so M(Id) = Id. Applying the map M�1 to both sides gives:

M�1(M(Id)) = M�1(Id) =) Id = M�1(Id).

Thus, M�1 is unital.

(iv) The trace of the snapshot is:

tr(⇢̂) = tr(M�1(U †|b̂ihb̂|U))

= hId, M�1(U †|b̂ihb̂|U)iHS (using tr(X) = hId, XiHS)

= hM�1(Id), U†|b̂ihb̂|UiHS (by self-adjointness of M�1)

= hId, U†|b̂ihb̂|UiHS (by unitality of M�1)

= tr(Id · U †|b̂ihb̂|U) = tr(U †|b̂ihb̂|U) = 1.

This completes the proof of (iv). ⇤

With these basic properties of the measurement channel M and the classical
snapshot ⇢̂, we can establish the variance of the unbiased estimator ô = tr(O⇢̂).

Lemma 97 (Variance of the Single-Shot Estimator). Let O be an observable, ⇢̂ be
a classical snapshot of ⇢, and ô = tr(O⇢̂). The variance of the single-shot estimator
ô is bounded above as follows,

Var[ô]  kO � tr(O)
d Idk2shadow,

where the shadow norm is defined by the measurement procedure:

kAk2shadow , max
�:state

EU⇠U

X

b2{0,1}n

hb|U�U†|bi
�
hb|UM�1(A)U†|bi

�2
.

Proof. Let O0 = O � tr(O)
d Id. We have

Var[ô] = E[tr(O⇢̂)2] � E[tr(O⇢̂)]2 = E[(tr(O⇢̂) � E[tr(O⇢̂)])2]

= E
"✓

tr(O0⇢̂) +
tr(O)

d
tr(⇢̂) � E[tr(O0⇢̂)] � tr(O)

d
E[tr(⇢̂)]

◆2
#

.

By Lemma 96, tr(⇢̂) = 1, so the variance can be simplified to

Var[ô] = E
h
(tr(O0⇢̂) � E[tr(O0⇢̂)])

2
i

= E
⇥
tr(O0⇢̂)

2
⇤
� E[tr(O0⇢̂)]

2.
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Algorithm 3: ShadowDataCollection(N , ⇢, U)

Input: Access to N copies of state ⇢, random unitary ensemble U
Output: A classical shadow S = {(Ut, b̂t)}Ntot

t=1

1 Initialize an empty list S;
2 for t = 1, . . . , N do
3 Take a fresh copy of ⇢;
4 Sample a unitary Ut ⇠ U ;

5 Measure the state Ut⇢U
†

t in the computational basis to get outcome b̂t;

6 Append the pair (Ut, b̂t) to S;
7 end
8 return S

The first term is

E[tr(O0⇢̂)
2] = E

⇣
tr
⇣
O0M�1

⇣
U †|b̂ihb̂|U

⌘⌘⌘2�
(by definition)

= E
⇣

tr
⇣
M�1(O0)U

†|b̂ihb̂|U
⌘⌘2�

(by self-adjointness)

= EU,b̂

h
hb̂|UM�1(O0)U

†|b̂i2
i

= EU

"
X

b

tr(|bihb|U⇢U †)hb|UM�1(O0)U
†|bi2

#
.

Plugging this into the variance expression and dropping the second non-positive
term �(tr(O0⇢))2 gives the stated variance bound. ⇤

2.2. Algorithm

The full algorithm for the classical shadow formalism involves (1) collecting a
number of snapshots N and then (2) processing them classically to produce esti-
mates for the expectation values of all M observables. The data collection phase
of classical shadow is given in Algorithm 3 and the prediction phase of classical
shadow is given in Algorithm 4.

2.3. Performance Guarantee

To analyze the performance of the classical shadow formalism, we begin with an
analysis of the estimators used to convert many single-shot predictions into a final,
high-confidence estimate. A powerful statistical tool for this is the median-of-means
estimator, which enables us to obtain exponentially decaying failure probabilities
from any random variable that has a bounded variance.

It is important to note that the standard mean estimator does not provide such
strong guarantees. While simple to implement, its sample complexity scales poorly
with the desired success probability.

Lemma 98 (Performance of the Standard Mean Estimator). Let X be a random

variable with mean µ and finite variance �2. Let µ̂N = 1
N

PN
i=1 Xi be the empirical
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Algorithm 4: ShadowPrediction({Oi}M
i=1, S, K)

Input: Observables {Oi}M
i=1, a classical shadow S = {⇢̂i}N

i=1 of size N
organized into K groups of size N/K

Output: Estimates {ôi}M
i=1

1 Let N 0 = N/K;
2 for i = 1, . . . , M do
3 Initialize an empty list of means Meansi;
4 for k = 1, . . . , K do
5 Let Sk be the k-th group of S consisting of N/K snapshots;
6 Compute empirical mean

7 ô(k)i = 1
N

P
(Ut,b̂t)2Sk

tr(Oi · M�1(U†

t |b̂tihb̂t|Ut));

8 Append ô(k)i to Meansi;
9 end

10 Set ôi = median(Meansi);
11 end
12 return {ôi}M

i=1

mean of N independent samples. To guarantee that |µ̂N � µ|  ✏ with a failure
probability of at most �, the number of samples required scales as:

N = O
✓
�2

✏2�

◆
.

Proof. The proof follows directly from Chebyshev’s inequality. The variance of
the empirical mean is Var[µ̂N ] = �2/N . Chebyshev’s inequality states that for any
random variable Y with finite variance, Pr[|Y � E[Y ]| � ✏]  Var[Y ]/✏2. Applying
this to our empirical mean µ̂N :

Pr[|µ̂N � µ| � ✏]  Var[µ̂N ]

✏2
=

�2

N✏2
.

To ensure this failure probability is at most �, we require:

�2

N✏2
 � =) N � �2

✏2�
.

This completes the proof. The crucial point is the sample complexity’s 1/� depen-
dence, which is unfavorable for high-confidence predictions (i.e., small �). ⇤

The median-of-means estimator circumvents this issue and achieves a much
better logarithmic dependence on 1/�.

Lemma 99 (Performance of Median-of-Means). Let X be a random variable with
mean µ and variance �2. Let {µ̂k}K

k=1 be K independent empirical means, each
constructed from N 0 independent samples of X. If N 0 � 4�2/✏2, then

Pr[|median{µ̂k} � µ| � ✏]  2 exp(�K/8).

Proof. The variance of any of the K empirical means is Var[µ̂k] = �2/N 0. By
Chebyshev’s inequality, the probability that a single empirical mean di↵ers from
the true expectation value by more than ✏ is

p = Pr[|µ̂k � µ| > ✏]  Var[µ̂k]

✏2
=

�2

N 0✏2
.
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By choosing N 0 � 4�2/✏2, we ensure p  1/4. The median estimate fails only if
at least K/2 of the means are incorrect. Let Zk be an indicator for the k-th mean
being incorrect. The Zk are i.i.d. Bernoulli variables with parameter p  1/4. By
a Hoe↵ding bound for the sum of Bernoulli variables,

Pr

"
KX

k=1

Zk � K/2

#
= Pr


1

K

X
Zk � p � 1

2
� p

�
 exp(�2K(1/2 � p)2).

Since p  1/4, we have (1/2 � p) � 1/4. Therefore, the failure probability is
bounded by exp(�2K(1/4)2) = exp(�K/8). ⇤

With the concentration inequalities provided above, we can obtain the following
performance guarantee for classical shadow formalism.

Theorem 100 (Performance of Classical Shadow Formalism). Fix a random uni-
tary ensemble U , a set of M observables {Oi}, and accuracy parameters ✏, � 2 (0, 1).

Let B = maxi kOi � tr(Oi)
d Idk2shadow. Using a total of

N = O
✓

B

✏2
log

✓
M

�

◆◆

measurements, the median-of-means procedure with K = O(log(M/�)) outputs es-
timates {ôi} such that with probability at least 1 � �,

|ôi � tr(Oi⇢)|  ✏ for all i = 1, . . . , M.

Proof. We combine the concentration inequality for the median-of-means estima-
tor from Lemma 99 and the variance bound of the single-shot estimator tr(Oi⇢̂t)
from Lemma 97. For each observable Oi with i = 1, . . . , M , the variance of the
single-shot estimator tr(Oi⇢̂t) is bounded as follows,

Var[tr(Oi⇢̂t)] 
����Oi � tr(Oi)

d
Id

����
2

shadow

 B.

For each observable Oi, we set the number of snapshots per empirical mean to
be N 0 = d4B/✏2e. To ensure the total failure probability over all M observables
is at most �, we use a union bound. We require the failure probability for each
observable to be at most �/M . From the lemma, we need to choose K such that
2e�K/8  �/M , which gives K = d8 log(2M/�)e = O(log(M/�)). The total number
of samples is N = N 0 · K = O

�
B
✏2 log

�
M
�

��
. ⇤

We can compare with the direct measurement approach to see that the depen-
dence on M is now improved from M log M to just log M . However, the classical
shadow formalism introduces an important dependence on the shadow norm. In
the next section, we will look at how these shadow norm scales with the choice of
the random unitary ensemble and the family of observables.

3. Instantiations of the Random Unitary Ensemble

The abstract sample complexity derived in the previous section becomes con-
crete once we specify the ensemble of random unitaries U and compute the cor-
responding shadow norm. In this section, we analyze two of the most important
ensembles: random global Cli↵ord circuits and random local Pauli measurements.
The proofs for their properties rely on unitary designs.
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3.1. A Useful Tool: Averaging over Unitary Group

The key feature of the Cli↵ord group and many other ensembles is that they
reproduce the statistical properties of the full unitary group (endowed with the
Haar measure). This is formalized by the concept of a unitary t-design.

Definition 101 (Unitary t-design). An ensemble of unitaries U is a unitary t-

design if, for any polynomial P with degree at most t in the matrix entries of U
and t in the entries of U†, the average over the ensemble is equal to the average
over the full unitary group with its unique uniform (Haar) measure:

EU⇠U [P (U, U†)] =

Z

U(d)
P (U, U†)dU.

Equivalently, the ensemble must reproduce the first t moments of the Haar measure,
which means that for all operators X:

EU⇠U [U⌦tX(U†)⌦t] =

Z

U(d)
U⌦tX(U†)⌦tdU.

Lemma 102. Unitary t-design is unitary t0-design for any t0 < t.

Proof. Let P (U, U†) be a polynomial of degree t0 in the entries of U and U †,
where t0 < t. Then P is also a polynomial of degree at most t. Since the ensemble
U is a t-design, the defining equality EU⇠U [P (U, U†)] =

R
U(d) P (U, U †)dU holds.

By definition, this means U is also a t0-design. ⇤
The power of a t-design is that we can compute averages over its elements using

known formulas for Haar integrals. A general method for this is the Weingarten
calculus. While the full calculus is beyond the scope of this lecture, we can use
some of its key results about moments of random vectors. If U is a Haar-random
unitary, then for a fixed vector |bi, the vector | i = U |bi is a random pure state
uniformly distributed on the unit sphere.

Fact 103 (Moments of Haar-Random Pure States). Let | i be a random pure state
in Cd distributed uniformly according to the Haar measure. The first three moments
of the operator | ih | are given by:

E[| ih |] =
Id

d

E[(| ih |)⌦2] =
Id ⌦ Id + S2

d(d + 1)
(25)

E[(| ih |)⌦3] =
1

d(d + 1)(d + 2)

X

⇡2S3

P⇡ (26)

where S3 is the symmetric group on 3 elements, S2 is the SWAP operator on (Cd)⌦2,
and P⇡ is the permutation operator on (Cd)⌦3 corresponding to ⇡ 2 S3.

We can now use these tools to derive the specific formulas needed to analyze
the measurement channels and shadow norm.

Lemma 104 (Derivation of Key Integral Formulas). Let the average be over an
ensemble U that forms a unitary 3-design (e.g., the Cli↵ord group [Web15]). For
a fixed vector |bi, the following identity holds from the 2-design property:

EU2U [hb|UAU†|biU †|bihb|U ] =
tr(A)Id + A

d(d + 1)
. (27)
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From the 3-design property, we also have:

EU2U [hb|UA0U
†|bihb|UB0U

†|biU †|bihb|U ] =
tr(A0B0)Id + A0B0 + B0A0

d(d + 1)(d + 2)
(28)

for any traceless operators A0, B0.

Proof. Let | i = U |bi be a Haar-random pure state. The expectation over U 2 U
is equivalent to the expectation over | i.
Proof of Eq. (27): Let �(A) = E| i[h |A| i| ih |]. To identify the operator �(A),
we can test it against an arbitrary operator C by taking the trace:

tr(�(A)C) = tr
�
E| i[h |A| i| ih |]C

�

= E| i[h |A| ih |C| i] (by linearity of trace and expectation)

= E| i[tr(A| ih |)tr(C| ih |)].

We can express this as a trace over a larger Hilbert space (Cd)⌦2:

tr(�(A)C) = E| i [tr1,2 ((A ⌦ C)(| ih | ⌦ | ih |))]
= tr1,2

�
(A ⌦ C)E[(| ih |)⌦2]

�
.

Now, we substitute the second moment formula from Eq. (25):

tr(�(A)C) = tr1,2

✓
(A ⌦ C)

Id ⌦ Id + S2

d(d + 1)

◆

=
1

d(d + 1)
(tr(A · Id)tr(C · Id) + tr((A ⌦ C) · S2)) .

Using the identity tr((X ⌦ Y )S2) = tr(XY ), we get:

tr(�(A)C) =
1

d(d + 1)
(tr(A)tr(C) + tr(AC)).

This holds for all C. We can see that this is satisfied by �(A) = tr(A)Id+A
d(d+1) , since

tr

✓✓
tr(A)Id + A

d(d + 1)

◆
C

◆
=

1

d(d + 1)
(tr(A)tr(C) + tr(AC)).

This concludes the proof of the first identity.

Proof of Eq. (28): Let  (A0, B0) = E| i[h |A0| ih |B0| i| ih |]. Again, we test
it against an arbitrary operator C:

tr( (A0, B0)C) = E| i[h |A0| ih |B0| ih |C| i]
= E| i[tr(A0| ih |)tr(B0| ih |)tr(C| ih |)].

Using the same trace trick on (Cd)⌦3:

tr( (A0, B0)C) = tr1,2,3

�
(A0 ⌦ B0 ⌦ C)E[(| ih |)⌦3]

�
.

Now we use the third moment formula from Eq. (26). A key identity for eval-
uating the trace with a permutation operator is tr1,...,t((O1 ⌦ · · · ⌦ Ot)P⇡) =
tr(O1O⇡(1) . . . ), where the trace is taken over the product of operators according
to the cycle decomposition of ⇡. For S3, we have:

• 1 identity permutation id:

tr(A0)tr(B0)tr(C).
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• 3 transpositions (12), (13), (23):

tr(A0B0)tr(C), tr(A0C)tr(B0), tr(B0C)tr(A0).

• 2 three-cycles (123), (132):

tr(A0B0C), tr(A0CB0).

Summing these terms and dividing by the prefactor d(d + 1)(d + 2) gives the full
expression for tr( (A0, B0)C). Since A0 and B0 are traceless, all terms containing
tr(A0) or tr(B0) vanish. We are left with:

tr( (A0, B0)C) =
tr(A0B0)tr(C) + tr(A0B0C) + tr(A0CB0)

d(d + 1)(d + 2)
.

Using the cyclic property of the trace, tr(A0CB0) = tr(B0A0C). This must hold
for all C. We check this against the trace of the right-hand side of Eq. (28):

tr

✓✓
tr(A0B0)Id + A0B0 + B0A0

d(d + 1)(d + 2)

◆
C

◆

=
tr(A0B0)tr(C) + tr(A0B0C) + tr(B0A0C)

d(d + 1)(d + 2)
.

The expressions match hence completes the proof. ⇤

3.2. Random Cli↵ord Measurements

The first ensemble we consider is the group of n-qubit Cli↵ord circuits. We
will define precisely what these are in a later lecture, but for now all that we
need is that they comprise a subgroup of the unitary group which forms a unitary
3-design [Web15, Zhu17], so we can use the formulas from Lemma 104. While
experimentally demanding for large systems, this ensemble has powerful theoretical
properties.

Lemma 105 (Measurement Channel for Cli↵ord Ensemble). For the ensemble of
global n-qubit Cli↵ord unitaries, U = Cl(2n), where d = 2n: The measurement
channel M and its inverse M�1 are given by

M(X) =
X + tr(X)Id

d + 1
,

M�1(X) = (d + 1)X � tr(X)Id.

Proof. We compute the channel M by applying the result from Eq. (27). For a
state ⇢ with tr(⇢) = 1:

M(⇢) = EU2Cl(d)

2

4
X

b2{0,1}n

tr(|bihb|U⇢U †) · U†|bihb|U

3

5

=
X

b2{0,1}n

EU2Cl(d)

⇥
hb|U⇢U †|bi · U †|bihb|U

⇤
.

Since the expression inside the expectation is the same for any basis state |bi due to
the average over the unitary group, we can evaluate it for a single |bi and multiply
by d. Using Eq. (27):

M(⇢) = d ·
✓

tr(⇢)Id + ⇢

d(d + 1)

◆
=

Id + ⇢

d + 1
.
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By linearity of the channel, for any operator X, M(X) = X+tr(X)Id
d+1 . To find the

inverse, we set Y = M(X) and solve for X:

Y =
X + tr(X)Id

d + 1
=) (d + 1)Y = X + tr(X)Id.

Taking the trace of both sides gives (d+1)tr(Y ) = tr(X)+tr(X)tr(Id) = tr(X)(1+
d). Thus, tr(X) = tr(Y ). Substituting this back gives:

(d + 1)Y = X + tr(Y )Id =) X = (d + 1)Y � tr(Y )Id.

So, M�1(Y ) = (d + 1)Y � tr(Y )Id. ⇤
Proposition 106 (Cli↵ord Shadows). For the random Cli↵ord ensemble:

(i) The classical snapshot is ⇢̂ = (d + 1)U†|b̂ihb̂|U � Id.
(ii) The shadow norm is bounded by kO0k2shadow  3tr(O2

0) for any traceless
operator O0.

Proof. (i) The snapshot is ⇢̂ = M�1(U†|b̂ihb̂|U). Since tr(U†|b̂ihb̂|U) = 1, applying
the inverse channel formula gives

⇢̂ = (d + 1)U†|b̂ihb̂|U � tr(U †|b̂ihb̂|U)Id = (d + 1)U†|b̂ihb̂|U � Id.

(ii) For a traceless operator O0, the inverse map is simply M�1(O0) = (d + 1)O0.
We now compute the shadow norm:

kO0k2shadow = max
�

EU

X

b

hb|U�U†|bi
�
hb|U(d + 1)O0U

†|bi
�2

= (d + 1)2 max
�

tr

 
�
X

b

EU [U†|bihb|Uhb|UO0U
†|bi2]

!
.

Using the 3-design formula from Eq. (28) with A0 = B0 = O0:
X

b

EU [. . . ] =
X

b

tr(O2
0)Id + O2

0 + O2
0

d(d + 1)(d + 2)
= d

tr(O2
0)Id + 2O2

0

d(d + 1)(d + 2)
=

tr(O2
0)Id + 2O2

0

(d + 1)(d + 2)
.

Plugging this back into the norm expression:

kO0k2shadow = (d + 1)2 max
�

tr

✓
�

tr(O2
0)Id + 2O2

0

(d + 1)(d + 2)

◆

=
d + 1

d + 2
max
�

�
tr(O2

0)tr(�) + 2tr(�O2
0)
�

=
d + 1

d + 2

⇣
tr(O2

0) + 2 max
�

tr(�O2
0)
⌘

.

Since max� tr(�O2
0) is the largest eigenvalue of the Hermitian operator O2

0, denoted
kO2

0k1, and since kO2
0k1 = kO0k21 

P
i �i(O0)2 = tr(O2

0), we have

kO0k2shadow  d + 1

d + 2
(tr(O2

0) + 2tr(O2
0)) = 3tr(O2

0)
d + 1

d + 2
< 3tr(O2

0),

which establishes the shadow norm bound. ⇤
The key strength of Cli↵ord shadows is the dependence on tr(O2). For example,
to estimate the fidelity with an n-qubit pure state | i, F = tr(| ih |⇢), we use
the observable O = | ih |. Here, tr(O2) = 1. Hence the required number of
measurements to estimate fidelities with any M pure states | 1i , . . . , | M i is only
N = O(log(M/�)/✏2). This is independent of the system size n.
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3.3. Random Pauli Measurements

The second ensemble we consider is when the random unitary corresponds to a
tensor product of n single-qubit Cli↵ord unitary. This ensemble is highly practical,
as it only involves single-qubit rotations. Furthermore, the measurement protocol
obtained from this ensemble is equivalent to measuring each qubit in a random
Pauli basis (X, Y, or Z).

Lemma 107 (Measurement Channel for Pauli Ensemble). For the ensemble of
local random unitaries, U = Cl(2)⌦n: The measurement channel M and its inverse
M�1 factorize into single-qubit channels:

M(X) = M1(X1) ⌦ · · · ⌦ M1(Xn),

M�1(X) = M�1
1 (X1) ⌦ · · · ⌦ M�1

1 (Xn),

where M1(Y ) = (tr(Y )Id + Y )/3 is the single-qubit depolarizing channel, and
M�1

1 (Y ) = 3Y � tr(Y )Id.

Proof. The ensemble is a product distribution giving rise to U = U1 ⌦ · · · ⌦ Un,
and the measurement basis is a product basis |bi = |b1i ⌦ · · · ⌦ |bni. For a product
input X = X1 ⌦ · · · ⌦ Xn, the channel action is

M(X) = EU

X

b1,...,bn

tr

0

@
nO

j=1

|bjihbj |
nO

k=1

UkXkU†

k

1

A
nO

l=1

U†

l |blihbl|Ul

=
nO

j=1

0

@EUj

X

bj

tr(|bjihbj |UjXjU
†

j )U†

j |bjihbj |Uj

1

A =
nO

j=1

M1(Xj).

The form of the single-qubit channel M1 follows from the Cli↵ord case with d = 2.
The inverse also factorizes accordingly. ⇤
Proposition 108 (Pauli Shadows). For the random Pauli measurement ensemble:

(i) The snapshot is a tensor product: ⇢̂ =
Nn

j=1(3U†

j |b̂jihb̂j |Uj � Id).
(ii) For a Pauli operator O = P1 ⌦ · · · ⌦ Pn, where Pi 2 {I, X, Y, Z} and only

k Pi’s are not identity, the shadow norm is exactly kOk2shadow = 3k.

Proof. (i) This follows directly from the factorized inverse channel derived in
the preceding lemma, applied to the product state U †|b̂ihb̂|U =

N
j U†

j |b̂jihb̂j |Uj .

For each qubit j, we have tr(U†

j |b̂jihb̂j |Uj) = 1, so the single-qubit inverse map

M�1
1 (Y ) = 3Y � tr(Y ) · Id yields the desired form.

(ii) Let the observable be O =
Nn

j=1 Pj . First, we compute the action of the inverse
channel on O. Since the channel factorizes, so does its inverse:

M�1(O) =
nO

j=1

M�1
1 (Pj).

For each qubit, if Pj 2 {X, Y, Z}, it is traceless, so M�1
1 (Pj) = 3Pj . If Pj = Id, it

has trace 2, so M�1
1 (Id) = 3Id � tr(Id) · Id = 3Id � 2Id = Id. Therefore,

M�1(O) =

0

@
O

j:Pj 6=Id

3Pj

1

A⌦

0

@
O

j:Pj=Id

Idj

1

A = 3kO.
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The shadow norm is the maximum of tr(�L) over any state � for the operator

L = EU

X

b

(U†|bihb|U)
�
hb|UM�1(O)U†|bi

�2
.

Substituting our result for M�1(O):

L = (3k)2EU

X

b

(U†|bihb|U)
�
hb|UOU†|bi

�2
.

Because the ensemble, basis, and observable are all tensor products (U =
N

j Uj ,
|bi =

N
j |bji, O =

N
j Pj), the operator L itself factorizes into a tensor product of

single-qubit operators, L =
Nn

j=1 Lj :

L = (3k)2
nO

j=1

0

@EUj

X

bj

U†

j |bjihbj |Uj

⇣
hbj |UjPjU

†

j |bji
⌘2
1

A = 9k
nO

j=1

Lj .

We now evaluate the single-qubit operator Lj for the two cases:

If Pj = Id: The squared term is (hbj |Uj · Id · U†

j |bji)2 = 12 = 1. Then

Lj = EUj

X

bj

U †

j |bjihbj |Uj = EUj

2

4U †

j

0

@
X

bj

|bjihbj |

1

AUj

3

5 = Id.

If Pj 2 {X,Y, Z}: Pj is traceless. So the operator Lj is precisely the sum over the
basis states of the operator in Eq. (28) with d = 2 and A0 = B0 = Pj .

Lj =
X

bj

EUj [hbj |UjPjU
†

j |bji2U †

j |bjihbj |Uj ]

= d ·
tr(P 2

j )Id + 2P 2
j

d(d + 1)(d + 2)
(where d = 2)

= 2 · 2Id + 2Id

2(3)(4)
=

4Id

12
=

1

3
Id.

We have k operators of the form 1
3 Id and n�k operators of the form Id. Assembling

the full operator L:

L = 9k

0

@
O

j:Pj 6=Id

1

3
Id

1

A⌦

0

@
O

j:Pj=Id

Id

1

A = 9k ·
✓

1

3

◆k

· Id⌦n = 3kId.

The shadow norm is simply 3k:

kOk2shadow = max
�

tr(�L) = max
�

tr(� · 3kId) = 3k max
�

tr(�) = 3k.

This completes the proof. ⇤
Pauli shadows are ideal for problems where the observables we are interested in pre-
dicting can be decomposed to a few low-weight Pauli operators. Examples include
two-point correlation function, energy, and energy variance.


