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This problem set will cover concepts from quantum state tomography and shadow tomography.
The questions have been labeled with the date of the lecture in which the relevant material is covered, to help you budget your time. The
questions are meant to be challenging, so do not feel discouraged if you get stuck and are unable to solve some of them.
If you find that you are running low on time to finish all the problems, our recommendation is to try to aim for breadth rather than depth
– e.g., it is better to complete a few parts of each of the three questions, than to completely solve one of the three questions and skip the
others.
Below we provide hints for the various problems in this assignment. While these may help you solve the problems more easily, you are not
required to follow the hints as long as the proofs you provide are correct.

1 (40 pts.) Tying up some loose threads about tomography (9/24, 9/29)

Motivation: In class we learned about a protocol for state tomography that achieves optimal sample complexity, up to logarithmic
factors, using representation theory. In this exercise, we will go over a few isolated details that we did not have time to cover in class.

1.A. (5 pts.) Power of entangled measurements. The following was sketched briefly in class, and your goal is to provide a rigorous
proof. We say that a learning protocol that is given a collection of N copies of an unknown state ρ uses adaptive unentangled
measurements if it implements the following interaction:

• For i = 1, . . . , N :
– Based on the outcomes of the measurements performed so far on previous copies of ρ, choose a POVM {Mz}
– Measure the i-th copy of ρ with POVM, and record the outcome, call it zi, of the measurement. Discard the post-

measurement state.

Prove that this interaction, which results in a sequence of outcomes z1, . . . , zN , can be simulated with a single entangled
measurement performed on ρ⊗N .

1.B. (5 pts.) Block-diagonal structure. Prove or disprove: Let ρ ∈ Cd×d be an unknown density matrix which is known to be
block-diagonal with blocks corresponding to known projectors Π1, . . . ,Πm. Consider measuring ρ with a POVM {Mz}. Then
this is equivalent to instead performing the POVM {Π1, . . . ,Πm} first, and then performing {Mz} on the post-measurement
state.

1.C. (12 pts.) Specht modules are irreps of SN . Prove the following facts stated in class, using Lemmas 74 and 75 from the
lecture notes: (i) Vλ = C[SN ]cλ is an irrep of SN for any λ ⊢ [N ], (ii) For any distinct partitions λ, µ ⊢ [N ], Vλ and Vµ are not
isomorphic.
Hint: For (i), you may find it helpful to use the fact that if W ⊆ Vλ is a subspace, then W ·W = 0 implies W = 0.

1.D. (12 pts.) Characterization of SλVλ. Prove that for any g ∈ C[SN ], the space g · H, where H = (Cd)⊗N , has the structure
of a GLd-representation.1 Then use Lemma 74 to prove that the GLd-representation SλVλ is isomorphic to the representation
cλ · H. You may use without proof the fact that c2λ is a nonzero scalar multiple of cλ.
Hint: Note that any f ∈ SλVλ is entirely determined by where it maps cλ.

1.E. (6 pts.) Saturating Fuchs-van de Graaf. For any 0 ⩽ ϵ ⩽ 1, construct a pair of density matrices σ, σ′ such that

ϵ =
1

2
∥σ − σ′∥tr =

√
1− F (σ, σ′)2 ,

where the fidelity F (σ, σ′) is defined by F (σ, σ′) ≜ tr(
√√

σσ′√σ).
Hint: You may find it helpful to focus on pure states.

Solution:
1.A.

1.B.

1.C.

1.D.

1.E.

1If g ∈ C[SN ] is given by g =
∑

π∈SN
aππ, and v ∈ H, then g · v denotes the element

∑
π aππ · v ∈ H. The expression cλ · H then denotes the subspace of H

consisting of all points of the form cλ · v for v ∈ H.
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2 (40 pts.) Estimating many Pauli expectations in parallel (10/1)

Motivation: Suppose we are given m Pauli operators C1, . . . , Cm on n qubits, each of weight at most k. We want to estimate
all expectations µi = tr(Ciρ) to additive accuracy ε, with failure probability at most δ, using as few copies of ρ as possible. An
important idea (the basis of quantum overlapping tomography, a precursor to classical shadow tomography) is to measure, on each
copy of ρ, a random full-weight Pauli string from {X,Y, Z}⊗n and to reuse these outcomes to estimate every Ci supported on that
string. You will prove that

N = O

(
3k

ε2
log

m

δ

)
samples suffice.

Setup: On each of N copies of ρ, draw P (t) ∈ {X,Y, Z}⊗n uniformly at random and measure it, obtaining outcomes o
(t)
j ∈ {±1}.

For Ci =
⊗n

j=1 σi,j with support supp(Ci) = {j : σi,j ̸= I}, set

1
(t)
i = 1

[
∀j ∈ supp(Ci) : P

(t)
j = σi,j

]
,

Y
(t)
i =

∏
j∈supp(Ci)

o
(t)
j .

If 1(t)
i = 1, then Y

(t)
i is a valid single-shot outcome for Ci. Let

Si =

N∑
t=1

1
(t)
i , µ̂i =

1

max{1, Si}
∑

t:1
(t)
i =1

Y
(t)
i .

2.A. (4 pts.) Hit probability. Show that for each i,

pi = Pr[1
(t)
i = 1] = 3−wt(Ci).

Deduce the uniform lower bound pi ⩾ 3−k for all i.

2.B. (6 pts.) Enough hits. Use the multiplicative Chernoff bound for Si ∼ Bin(N, pi) and provide an N such that with probability
at least 1− δ/3

Si ⩾ (1− ε)Npmin for all i

where pmin = mini pi ⩾ 3−k.

2.C. (10 pts.) Accuracy given enough hits. Condition on Si ⩾ T . Show that Hoeffding’s inequality implies

Pr
[
|µ̂i − µi| > ε

∣∣ Si ⩾ T
]
⩽

δ

3m

provided T ⩾ 2
ε2 log(3m/δ).

2.D. (8 pts.) Putting it all together. Combine the previous parts and a union bound over all i to conclude that if

N ⩾
2

ε2(1− ε) pmin
log

(
3m
δ

)
,

then with probability at least 1 − δ, all estimates satisfy |µ̂i − µi| ⩽ ε. Simplify using pmin ⩾ 3−k to obtain the stated
O(3kε−2 log(m/δ)) scaling.

2.E. (12 pts.) Extension: commutators. Define Kjk = tr
(
i[Pj , Pk]ρ

)
. Show that if each Pj has weight ⩽ k, then any nonzero

commutator has weight at most 2k − 1. Deduce the number of samples needed so that all nonzero entries of K are estimated
to accuracy ε with probability ⩾ 1− δ.

Solution:
2.A.

2.B.

2.C.

2.D.

2.E.
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3 (40 pts.) Advanced Pauli Expectation Estimation (10/1)

Motivation: In earlier problems, we analyzed methods for efficiently estimating expectation values of low-weight Pauli operators. We
now extend our analysis to the more general and challenging case where the Pauli observables are not guaranteed to be low-weight.

Part I: Commuting and Partitionable Observables (26 points)

Consider a set of m distinct n-qubit Pauli observables S = {C1, . . . , Cm} that pairwise commute, i.e. [Ci, Cj ] = 0 for all i ̸= j.

3.A. (8 pts.) Simultaneous Diagonalization. Show that there exists a unitary U such that for every i, U†CiU is a tensor product
of I and Z operators.
Hint: Try to construct U in a sequence of steps that gradually transform the Ci’s into products of I and Z operators, as if you
were performing Gaussian elimination.

3.B. (8 pts.) Sample Complexity for Commuting Sets. Using the result from part (a), prove that O(log(m/δ)/ε2) measurements
on individual copies of an unknown state ρ are sufficient to estimate all expectation values tr(Ciρ) for Ci ∈ S to additive error
ε with total failure probability at most δ.

3.C. (10 pts.) Partitioned Sets. Now consider an arbitrary set S of m Pauli observables that can be partitioned into M disjoint
commuting subsets S = S1∪S2∪· · ·∪SM , where observables within each Sj mutually commute. Prove that O(M log(m/δ)/ε2)
total measurements on individual copies of ρ are sufficient to estimate all expectation values in S to the desired accuracy.

Part II: The General Case and Fractional Coloring (14 points)

Consider an arbitrary set S = {C1, . . . , Cm} of Pauli observables that may not commute with one another. To analyze this case, we
introduce the concept of fractional coloring of a graph.

Definition: Let G = (V,E) be a graph. A fractional coloring of G with parameter χ is a probability distribution q over the
independent sets I ⊆ V of the graph such that every vertex v ∈ V has probability at least 1/χ of being included in an independent
set randomly sampled from the distribution q:

∀v ∈ V : Pr
I∼q

[v ∈ I] ⩾ 1/χ.

The smallest possible value of χ for which such a distribution exists is called the fractional chromatic number of G, denoted χf (G).

3.D. (14 pts.) Fractional Coloring and Sample Complexity. Define the anticommutation graph G(S) where each Pauli observable
in S corresponds to a vertex, and an edge connects any two observables that anticommute. Prove that if G(S) admits
a fractional coloring with parameter χ, then a total of O(χ log(m/δ)/ε2) measurements on individual copies of ρ suffice to
estimate all expectation values in S to additive error ε with total failure probability at most δ.

Solution:
3.A.

3.B.

3.C.

3.D.
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