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This problem set will cover concepts from shadow tomography and Gibbs state learning.
The questions have been labeled with the date of the lecture in which the relevant material is covered, to help you budget your time. The
questions are meant to be challenging, so do not feel discouraged if you get stuck and are unable to solve some of them.
If you find that you are running low on time to finish all the problems, our recommendation is to try to aim for breadth rather than depth
– e.g., it is better to complete a few parts of each of the three questions, than to completely solve one of the three questions and skip the
others.
Below we provide hints for the various problems in this assignment. While these may help you solve the problems more easily, you are not
required to follow the hints as long as the proofs you provide are correct.

1 (25 pts.) Learning Parameterized Quantum States (10/8 and 10/15)

Motivation: Full quantum state tomography requires a number of samples exponential in the number of qubits, which is generally
intractable. However, many quantum states encountered in physics and quantum algorithms are not arbitrary but belong to families
described by a small number of parameters. In this problem, we will explore how to leverage this structure to learn an unknown state
from such a family using only Õ(n) copies. This problem will combine several powerful ideas taught in class: covering nets, efficient
Gibbs state preparation, online learning, and shadow tomography.
Setup: We are given classical knowledge of a family of n-qubit pure states parameterized by a vector x⃗ = (x1, . . . , xk) ∈ [−1, 1]k,
where the number of parameters is k = O(log n). The parameterized state is given by a polynomial-depth quantum circuit U(x⃗) such
that |ψ(x⃗)⟩ = U(x⃗) |0⟩⊗n. We are also told this family is Lipschitz continuous, that is,

∥ |ψ(x⃗)⟩ − |ψ(x⃗′)⟩ ∥2 ⩽ ∥x⃗− x⃗′∥2 .

We are given Õ(n) copies of an unknown state ρ with the promise that ρ = |ψ(x⃗true)⟩ ⟨ψ(x⃗true)| for some unknown x⃗true ∈ [−1, 1]k.
Our goal is to find a parameter vector x⃗∗ such that

∥ρ− |ψ(x⃗∗)⟩⟨ψ(x⃗∗)| ∥1 < 0.01 ,

where ∥ · ∥1 is the trace norm.

1.A. (5 pts.) (Constructing a Covering Net) First, we must discretize the continuous parameter space. Show that it is possible
to construct a finite set of parameter vectors N ⊂ [−1, 1]k, called a net, such that for any potential true parameter vector x⃗true,
there exists a net vector x⃗i ∈ N satisfying ∥ |ψ(x⃗true)⟩⟨ψ(x⃗true)| − |ψ(x⃗i)⟩⟨ψ(x⃗i)| ∥1 ⩽ 0.005. Prove that the size of this net,
M = |N |, is polynomial in n. Let the set of states corresponding to this net be Snet = {|ψi⟩}Mi=1.

1.B. (5 pts.) (Computationally Efficient Online Learning for Rank-1 Observables) Assume access to a poly(n)-time quantum
algorithm that can prepare a single copy of the state exp(−H)/ tr exp(−H) given any Hermitian operator H with polynomial
rank (such an algorithm was developed by Brandão et al. in “Quantum SDP Solvers”). Using this oracle, describe a complete,
computationally efficient quantum algorithm for online learning of quantum states when the observables are restricted to be rank
1. Your proof of correctness can cite as a black box any guarantees that were stated in class about matrix multiplicative weights.

1.C. (7 pts.) (Computationally Efficient Shadow Tomography for Rank-1 Observables) The complete shadow tomography
protocol taught in class is only guaranteed to be sample-efficient; its computational complexity can be exponential. However,
by replacing its internal online learning subroutine with your efficient implementation from the previous question, we can make
the entire protocol computationally efficient for our specific problem.
Describe how to create a quantum algorithm for shadow tomography for observables O1 = |ψ1⟩⟨ψ1| , . . . , OM = |ψM ⟩⟨ψM | that
runs in poly(n) time, uses Õ(n) copies of an unknown state ρ, and predicts the expectation values tr(|ψi⟩⟨ψi| ρ) up to any
small constant error for all i ∈ {1, . . . ,M}. You may use Theorem 115 from the lecture notes as a black box (while we did
not stipulate that the blended measurements algorithm is computationally efficient, you may assume that without proof for this
problem).

1.D. (8 pts.) (The Full Learning Algorithm) You now have all the necessary components. Combine them to develop a final
quantum learning algorithm that solves the original problem of learning parametrized quantum states with high probability in
poly(n) time. Your description should first outline the complete sequence of steps. Then, provide a proof of correctness, showing
that the output x⃗∗ satisfies the desired accuracy bound. Your proof should also justify the sample complexity, explaining why
the number of copies of ρ needed is only Õ(n).

Solution:
1.A.
1.B.
1.C.
1.D.
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2 (40 pts.) Learning Classical Hamiltonians from Gibbs States (10/15 and 10/20)

Motivation: In class we were introduced to the problem of Hamiltonian learning from Gibbs states. It turns out that this question
has also been the subject of considerable interest in the classical learning theory community. Classical Gibbs states enjoy a number
of nice properties that quantum Gibbs states do not, which enable the use of algorithmic techniques which do not yet have suitable
quantum analogues. In this exercise, you will explore one such technique, the pseudolikelihood method.
In this question, a classical Gibbs state with pairwise interactions, sometimes known as an Ising model, is a probability distribution
µ over the Boolean hypercube {−1, 1}n which is specified by a symmetric interaction matrix A ∈ Rn×n and which has probability
mass function

µ(x) =
1

Z
exp(−x⊤Ax) for Z ≜

∑
x∈{−1,1}n

exp(−x⊤Ax) .

Given symmetric interaction matrix A′ corresponding to classical Gibbs state µ′, define the pseudolikelihood loss PL(A′) ⩾ 0 with
respect to µ to be the quantity

PL(A′) ≜
n∑

i=1

PL(i)(A′) for PL(i)(A′) ≜ E
z∼µ

[
− log(µ′(xi = zi | x\i))

]
.

In this exercise, you will show that if PL(µ′) is minimized over all Ising models µ′, then the minimizer is exactly µ.

2.A. (5 pts.) Let i ∈ [n] and let x\i ∈ {−1, 1}n−1 be any assignment to the coordinates of x outside of the i-th coordinate.
Compute the conditional probability

µ(xi = 1 | x\i) .

(Your derivation should be entirely self-contained, e.g., do not invoke any facts that were not proved in class.)
Conclude that PL(i)

µ (A′) only depends on the off-diagonal entries of A′ in the i-th row (recall that A′ is symmetric).

Thus, henceforth, given a symmetric matrix M ∈ Rn×n we will write M [i] ∈ Rn−1 to denote the vector consisting of all off-diagonal
entries in the i-th row. We will use PL(i)

µ (A′[i]) in place of PL(i)
µ (A′[i]) so that in all subsequent parts, PL(i)

µ is a function Rn−1 → R.

Next, given a differentiable function F : Rd → R, x ∈ Rd, define the curvature of f around x by

δFx(∆) = F (x+∆)− F (x)− ⟨∆,∇F (x)⟩

for all ∆ ∈ Rd. Our goal in the next two parts will be to lower bound the curvature of the pseudolikelihood loss.
Below, you may use without proof the following elementary calculus fact:

Fact: For ψ(x) ≜ log(1 + exp(−2x)), δψx(∆) ⩾ exp(−2γ)∆2/2 for any ∆ ∈ R if max(|x|, |x+∆|) ⩽ γ.

2.B. (7 pts.) Show that for any A,A′ for which the off-diagonal entries in the i-th column of either have magnitudes summing to
at most γ, then for ∆ ≜ A′[i]−A[i],

δPL
(i)
A (∆) ⩾

exp(−2γ)

2
Varµ

[∑
j:j ̸=i

∆ijxj

]
.

2.C. (15 pts.) Conclude that for A,A′ satisfying the assumptions of the previous part, δPL(i)
A (∆) ⩾ exp(−4γ)

2 ∥∆[i]∥2∞.
Hint: Computing expectations of quadratic functions over µ can be unwieldy. You may find it helpful to use the law of total
variance, as well as your characterization of the conditional marginals of µ from Part 2.A..

In the last part of this exercise, we will show how to go from a bound on the curvature to a statement about the optimization
landscape of the pseudolikelihood loss. Let Ω denote the set of matrices A′ for which the sum of the off-diagonal entries in any row
is at most γ, and suppose A ∈ Ω. You may use without proof that ∥∇PL(i)

µ (A′)∥1 ⩽ C for some finite quantity C for all A′ ∈ Ω.

2.D. (8 pts.) Suppose A′ satisfies PL(A′) ⩽ minA∗ PL(A∗)+η. Give an upper bound on ∥A′−A∥∞ that depends only on C, γ, n, η
and which tends to zero as η → 0.

2.E. (5 pts.) Describe informally in a few sentences how one might use the above ingredients to design an algorithm that takes
samples from µ and learns an approximation of A. You do not need to prove this algorithm works, but the intuition needs to be
correct.

Solution:
2.A.

2.B.

2.C.

2.D.

2.E.
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3 (40 pts.) Lower bound for learning Hamiltonians (10/15 and 10/20)

Motivation: In this problem you will derive an information-theoretic lower bound for learning a Hamiltonian from copies of its Gibbs
state in the ℓ∞ metric. The proof reduces learning to a multi-hypothesis test between closely related Gibbs distributions and applies
Fano’s lemma. As we will see, the proof ingredients are entirely classical; later in this course, we will revisit these tools and develop
“inherently quantum” analogues.

Setup: Let ρβ(H) = e−βH/tr(e−βH) be the Gibbs state at inverse temperature β > 0. Consider the Pauli matrices Z ⊗ I, I ⊗ Z,
and Z ⊗ Z, which are diagonal with

Z ⊗ I = diag(1, 1,−1,−1), I ⊗ Z = diag(1,−1, 1,−1), Z ⊗ Z = diag(1,−1,−1, 1).

For any ε ∈ (0, 12 ], define two diagonal 2-qubit Hamiltonians

H0 = (−1)(Z ⊗ I)− 1

2
(I ⊗ Z)− 1

2
(Z ⊗ Z) = diag(−2, 0, 1, 1),

H1 = (−1)(Z ⊗ I) +
(
−1

2
+ ε

)
(I ⊗ Z) +

(
−1

2
− ε

)
(Z ⊗ Z) = diag(−2, 0, 1 + 2ε, 1− 2ε).

Let q0, q1 denote the classical probability vectors obtained from the diagonal entries of ρβ(H0), ρβ(H1), respectively, and write
DKL(p∥q) =

∑
j pj log(pj/qj).

3.A. (8 pts.) Warm-up: explicit Gibbs distributions. Compute q0 and q1, and then derive the exact expression for DKL(q1∥q0).
3.B. (14 pts.) Bounding the KL divergence. Show that

DKL(q1∥q0) ⩽ 8β2ε2 e−3β+2βε ⩽ 8β2ε2 e−2β for ε ∈ (0,
1

2
].

Hints: Use log x ⩾ 1− 1
x for x > 0 and 1− e−x ⩽ x for x ⩾ 0, and note e−3β+2βε ⩽ e−2β when ε ⩽ 1

2 .

3.C. (6 pts.) Product construction and the chain rule. Consider a system of 2N qubits organized into N disjoint pairs of 2
qubits each. We construct N + 1 hypotheses about the system’s total Hamiltonian:

• Null hypothesis: All N pairs have Hamiltonian H0. This induces the product distribution p0 = q⊗N
0 .

• Alternative hypothesis i (for i ∈ [N ]): The i-th pair has Hamiltonian H1; all other pairs have H0. This induces the
product distribution pi = q0 ⊗ · · · q0 ⊗ q1︸︷︷︸

ith slot

⊗ q0 ⊗ · · · q0.

With S i.i.d. samples from these distributions, prove that:

DKL

(
p⊗S
i

∥∥ p⊗S
0

)
= S DKL(q1∥q0).

This shows the KL divergence scales linearly with the number of samples and depends only on the single-pair divergence.
Hint: Use the chain rule for KL divergence (you may use this without proof) and the fact that the hypotheses differ on exactly
one pair.

3.D. (12 pts.) From Fano’s lemma to a lower bound. You may use the following form of Fano’s lemma.

Fact 1: Fano’s lemma. Let P0, P1, . . . , PN be distributions such that 1
N+1

∑N
j=1DKL(Pj∥P0) ⩽ α with 0 < α < logN .

Then the minimax error of testing among {P0, . . . , PN} is at least

1− log 2 + α

logN
.

Here, the minimax error of testing is infτ maxj∈{0,...,N} ProbX∼Pj
[τ(X) ̸= j], where τ(X) is any test that attempts to identify

which distribution generated the observation X. This represents the best achievable worst-case error probability across all pos-
sible testing procedures.

Fano’s lemma thus provides a fundamental lower bound: when the distributions are close on average (small α), no test can
reliably distinguish between them. Apply Fano’s lemma to {p⊗S

0 , p⊗S
1 , . . . , p⊗S

N } together with your bound from part (b) to show
that any learner achieving ℓ∞ error at most ε/2 with failure probability at most, say, 1/3 must use

S = Ω

(
e2β

β2ε2
logN

)
copies of the Gibbs state.

Hint: Learning to ℓ∞ error < ε/2 distinguishes which pair corresponds to H1.
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Solution:
3.A.

3.B.

3.C.

3.D.
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