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This problem set will cover more concepts regarding Gibbs states, specifically Lieb-Robinson bounds and Lindbladians. The former is closely
related to the low-temperature learning algorithm from class, and the latter is supplementary material meant to expose you to the adjacent
area of Gibbs sampling which is closely related to some of the ideas from the low-temperature material.

The questions have been labeled with the date of the lecture in which the relevant material is covered, to help you budget your time. The
questions are meant to be challenging, so do not feel discouraged if you get stuck and are unable to solve some of them.

If you find that you are running low on time to finish all the problems, our recommendation is to try to aim for breadth rather than depth
—e.g., it is better to complete a few parts of each of the three questions, than to completely solve one of the three questions and skip the
others.

Below we provide hints for the various problems in this assignment. While these may help you solve the problems more easily, you are not
required to follow the hints as long as the proofs you provide are correct.

(40 pTs.) L1EB-ROBINSON BOUNDs (10/29)

Notation. Consider Hamiltonian H = )"\, P, with coefficients satisfying |A\,| < 1. Recall that the dual interaction graph of H is
the graph whose vertices correspond to the terms {P,}, and whose edges connect terms P, and P, that have overlapping support.
The interaction degree 0 of H is the degree of this graph. We say that two vertices in the graph have distance ¢ if the shortest path
between them is of length £. We say that a vertex has distance £ from a subset S of qubits if the minimum of its distances to all of
the terms P, which overlap with S is £.

Recall the statement of the Lieb-Robinson bound from class.

Lemma 1.1 (Lieb-Robinson bound). Lett € R. For any operator A acting on subsystem S C [n| and satisfying ||Allop < 1, if
Hy is given by removing all terms from H at distance at least ¢ from S, then

45 (®) — An(Ollp < 151 2

The goal of this exercise will be to prove a weak version of the result for short times ¢ and very local operators A. We will also explore
consequences for bounds on imaginary time-evolved operators.

Below, let A be an operator that only acts on a single qubit, that is, |S| = 1. Suppose as before that ||A||op < 1

1.A. (5 pTS.) Time derivative of time evolution. Verify the identity

& Aut) = ilH, An()

One can thus deduce from Taylor's theorem that

=A+ Z k' H,[H,---[H,A]-
k times
1.B. (12 pTs.) Lower-order terms agree. Prove that for k < ¢, [H, Alx = [Hy¢, Al
1.C. (15 pt1s.) Controlling higher-order terms. Prove that for £ > ¢, ||[H, Alx||op, [|[He, Alkllop < €' O(0)%.

1.D. (3 pt1s.) Finishing the proof for small times. Deduce that there is some absolute constant ¢ > 0 such that for any ¢, possibly
complex-valued, for which |t| < ¢/9,

8

| As,(8) = A () lop < O]
1.E. (5 prs.) Bound on imaginary time evolution Using Part 1.C., deduce that for p = e ## / tre=FH,

1

Ap~Hlop < ——5—

for some absolute constant C' > 0.

Solution:

1.A.
1.B.
1.C.
1.D.
1.E.




(40 PTS.) LOCAL LINDBLADIANS FOR SPIN CHAINS: DEPHASING, DETAILED BALANCE, AND MIXING (10/29)

Motivation: Open quantum spin chains provide a clean setting to see how Hamiltonian dynamics, noise, and thermalization interact.
In this problem you will (i) diagonalize a translation-invariant dephasing Lindbladian on a 1D spin chain, (ii) see why adding only
dephasing to a commuting Hamiltonian can lead to many steady states, and (jii) build a nearest-neighbor Gibbs sampler (a Davies—type
generator) whose unique fixed point is (morally) the Gibbs state of an Ising chain. You will then relate the spectral gap of the full
Lindbladian to the classical Glauber gap and a dephasing rate, and finish with a single-qubit example providing a concrete instantiation
of these bounds.

Setup: Let A = {1,...,n} be a ring of n qubits with periodic boundary conditions. Denote Pauli operators by X;,Y;, Z; acting on
site 7. A Lindbladian is a matrix-valued function of the form

£(p) = =ilH, gl + 3 70 (LepL] = H{L{Le,p}) |
¢

where the L,'s are called jump operators; this defines an evolution of density matrices given by

dp(t)

22 = £(o()

Throughout, we let H be the Ising Hamiltonian

Higing = _JZZiZH-l - hZZi,

€A 1EA

deph

with indices defined modulo n, and the uniform on-site dephasing Lindbladian with jump operators L; """ = Z; at rate v > 0:

Dgepn(p) = ’YZ(ZiPZi - ).
ieA

For any Pauli string P = @', 0; with o; € {I,X,Y, Z}, let
k;(y’(})) = |{i: o; € {)(,}/}}|
which we call the coherence order of P. We will also use single-spin flip operators ol?t = %(Xz +14Y;) and the local neighbor projectors
Pi(i?iﬂ =3I+ Zi)(I + Zita), Pi(Ijl'?iJ,-l = 1+ Zim))I ~ Ziya),  etc.

There are four such projectors; together they resolve the identity on sites ¢ + 1.

Primer. Stationary state for a Lindbladian: p, is stationary if L(p,) = 0.

Classical continuous-time Markov chain: On a finite state space 2, a generator Q = (Qz,y)z,yc0 has Q5 = 0 for z # y and rows
summing to zero: @z, = —Ey# QQz,y. Probabilities evolve by the master equation p; = p:Q). A distribution 7 is stationary if
mQ = 0. Detailed balance with respect to m means 7,Q; , = myQy o; this implies 7Q) = 0. The spectral gap of Q) is the smallest
nonzero value of — Re A over A € spec(Q); it governs exponential mixing to .

2.A. (8 pTS.) Warm-up: spectrum of translation-invariant dephasing. Consider £y := Dgepn with H = 0.

(i) Show that every Pauli string P is an eigenoperator of £y and compute its eigenvalue
Lo(P) = —2vkxy(P) P.

Here kxy (P) is the number of sites where P contains X or Y. Letting p(0) = >, cp(0) P, solve d’;—(tt) = Lo(p(t)) for the
cp(t)'s and comment on their decay properties.

(i) Compute the multiplicity of the eigenvalue —2+k of L.

Hint: count Pauli strings with exactly k letters in {X,Y}.
2.B. (8 prs.) Commuting Hamiltonians + dephasing: many steady states. Let Lcomm := —i[Hising, -] + Ddeph-

(i) Show that the subspace Diag, := {p : p is diagonal in the common eigenbasis of all Z;} is invariant under Lcomm, and
that Lcomm acts as zero on Diag,,.

(ii) Conclude that every classical probability distribution over spin configurations (embedded as a diagonal density matrix in the
Z basis) is a stationary state, and compute the dimension of the fixed point space (as a vector space; and as physical states
with trace one).

(iii) Argue that all non-diagonal Pauli strings decay at least at rate 2+, i.e. the nonzero part of the spectrum of Lcomm lies in
{A:Red < —2v}.



2.C.

2.D.

(10 pTs.) A local Gibbs sampler for the Ising chain. We now add local, neighbor-conditioned spin-flip jumps. For each site
i and each neighbor configuration s € {11, 14, }1,ll}, set

T/ p) + Vo i/ p(s) -
Li,s =\VTs Pifl,iJrl 0; ) Li,s =\VTs Pi71,i+1 O;
and define

L5(p) := —i[Hising, p] + Dacph(p) + Z(Lls p LT — {LIL] p}> + Z(Lis p Ll — %{LﬂLism}) :
7,8 i,8

Let S(s) € {—2,0,+2} denote the sum of neighbor spins in configuration s (eigenvalues £1 of Z). Flipping i from | to 1 when
neighbors are s changes the evaluation of the Hamiltonian by

Higing (15 8) — Higing (5 8) = =2(h + J 5(s)).
We fix explicit “heat-bath” rates
eB(h+I8(s)) e—B(h+JS(s))
" 2cosh(B(h + JS(s)))’ Tl 2cosh(B(h + JS(s)))’

4

rl =

for some k > 0 (overall time scale). We see that the rates (1) obey the local detailed balance condition

TL = (Husing (155)~ Husng (55) _ 26 (h+J S(3)).
ri
(i) Restriction to diagonal probabilities. Let py =3 (4 |1 pi(2) |2)(z] be diagonal. Show directly from the definition of
L3 that the diagonal entries evolve as

d n ; ;
@pt(z) = Z (pt(z( ) T;(Z(N)) +pe(211) Ti (26D) pe(z) (r;(z) 1+ T;J"i(z) 1Z'£:T)>7

i
i=1

where z(") (respectively 2(*¥)) is z with spin i set to 1 (respectively |), and s;(-) reads the neighbors of i. Conclude that
the restriction of L3 to Diag, is a classical continuous-time Markov chain with generator @ whose nonzero off-diagonal
entries flip a single spin with the rates in (1).

(i) Stationarity of the Gibbs distribution. Let ms(z) oc e #Hins(2) Using (i) and the definition of Q, show that for
configurations z, y that differ by one spin flip,

T3 (:’E) Qz,y =T7p (y) Qy,:z:~

This detailed balance identity implies 73Q) = 0. Conclude that the Gibbs state pg =

E*BHIsing

tr(e PTising) 1S stationary for Lg,

namely Lg(pg) = 0.

(8 pTs.) Decomposition and the mixing/spectral gap. Let gap(M) denote the spectral gap of a generator M, i.e., the
smallest nonzero value of —Re A over A € spec(M).
(i) Show that Diag, and its Hilbert—Schmidt orthogonal complement Off ; are invariant subspaces of Lg.
(ii) Prove that the spectrum of L3 contains the spectrum of the classical generator @ (acting on Diag).
(iii) Show that all eigenvalues of £z on Off ; satisfy Re A < —2v. Hint: The Hamiltonian commutator is anti-Hermitian (purely
imaginary); dephasing contributes < —2 to real parts; the extra dissipators are contractive.

(iv) Conclude that gap(Lg) = min{ 2v, gap(Q) }.
(6 pTs.) Single-site check: Heisenberg equation for Z. Consider a single qubit with H = 0 and jump operators LT =
Vot LY = /A7 0~. Work in the Heisenberg picture, where the dual generator acts as
Yot L on Work in the Heisenberg pi h he dual g

o) =3 (LaTOLa — Hretre, 0}).
ae{t 4}
Show that
LNZ)=~(m+v)Z+(n -],

and deduce the ODE

d
(8= = +0)( D)+ (o =)
with fixed point (Z)o, = 22, (If you choose 74 /7, = 2", verify that (7)., = tanh(Bh), consistent with a one-site Gibbs

yrtv”
state.)



Solution:

2.A.
2.B.
2.C.
2.D.
2.E.



