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This problem set will cover more concepts regarding Gibbs states, specifically Lieb-Robinson bounds and Lindbladians. The former is closely
related to the low-temperature learning algorithm from class, and the latter is supplementary material meant to expose you to the adjacent
area of Gibbs sampling which is closely related to some of the ideas from the low-temperature material.
The questions have been labeled with the date of the lecture in which the relevant material is covered, to help you budget your time. The
questions are meant to be challenging, so do not feel discouraged if you get stuck and are unable to solve some of them.
If you find that you are running low on time to finish all the problems, our recommendation is to try to aim for breadth rather than depth
– e.g., it is better to complete a few parts of each of the three questions, than to completely solve one of the three questions and skip the
others.
Below we provide hints for the various problems in this assignment. While these may help you solve the problems more easily, you are not
required to follow the hints as long as the proofs you provide are correct.

1 (40 pts.) Lieb-Robinson Bounds (10/29)

Notation. Consider Hamiltonian H =
∑

a λaPa with coefficients satisfying |λa| ⩽ 1. Recall that the dual interaction graph of H is
the graph whose vertices correspond to the terms {Pa}, and whose edges connect terms Pa and Pb that have overlapping support.
The interaction degree d of H is the degree of this graph. We say that two vertices in the graph have distance ℓ if the shortest path
between them is of length ℓ. We say that a vertex has distance ℓ from a subset S of qubits if the minimum of its distances to all of
the terms Pa which overlap with S is ℓ.

Recall the statement of the Lieb-Robinson bound from class.

Lemma 1.1 (Lieb-Robinson bound). Let t ∈ R. For any operator A acting on subsystem S ⊆ [n] and satisfying ∥A∥op ⩽ 1, if
Hℓ is given by removing all terms from H at distance at least ℓ from S, then

∥AHℓ
(t)−AH(t)∥op ⩽ |S| · O(d|t|)ℓ

ℓ!
.

The goal of this exercise will be to prove a weak version of the result for short times t and very local operators A. We will also explore
consequences for bounds on imaginary time-evolved operators.

Below, let A be an operator that only acts on a single qubit, that is, |S| = 1. Suppose as before that ∥A∥op ⩽ 1.

1.A. (5 pts.) Time derivative of time evolution. Verify the identity

∂

∂t
AH(t) = i[H,AH(t)]

One can thus deduce from Taylor’s theorem that

AH(t) = A+

∞∑
k=1

(it)k

k!
[H, [H, · · · [H︸ ︷︷ ︸

k times

, A] · · · ] := A+

∞∑
k=1

(it)k

k!
[H,A]k .

1.B. (12 pts.) Lower-order terms agree. Prove that for k < ℓ, [H,A]k = [Hℓ, A]k.
1.C. (15 pts.) Controlling higher-order terms. Prove that for ℓ ⩾ ℓ, ∥[H,A]k∥op, ∥[Hℓ, A]k∥op ⩽ ℓ! ·O(d)ℓ.
1.D. (3 pts.) Finishing the proof for small times. Deduce that there is some absolute constant c > 0 such that for any t, possibly

complex-valued, for which |t| ⩽ c/d,
∥AHℓ

(t)−AH(t)∥op ⩽ O(d|t|)ℓ .

1.E. (5 pts.) Bound on imaginary time evolution Using Part 1.C., deduce that for ρ = e−βH/ tr e−βH ,

∥ρAρ−1∥op ⩽
1

1− Cdβ

for some absolute constant C > 0.

Solution:
1.A.

1.B.

1.C.

1.D.

1.E.

1



2 (40 pts.) Local Lindbladians for spin chains: dephasing, detailed balance, and mixing (10/29)

Motivation: Open quantum spin chains provide a clean setting to see how Hamiltonian dynamics, noise, and thermalization interact.
In this problem you will (i) diagonalize a translation-invariant dephasing Lindbladian on a 1D spin chain, (ii) see why adding only
dephasing to a commuting Hamiltonian can lead to many steady states, and (iii) build a nearest-neighbor Gibbs sampler (a Davies–type
generator) whose unique fixed point is (morally) the Gibbs state of an Ising chain. You will then relate the spectral gap of the full
Lindbladian to the classical Glauber gap and a dephasing rate, and finish with a single-qubit example providing a concrete instantiation
of these bounds.

Setup: Let Λ = {1, . . . , n} be a ring of n qubits with periodic boundary conditions. Denote Pauli operators by Xi, Yi, Zi acting on
site i. A Lindbladian is a matrix-valued function of the form

L(ρ) = −i[H, ρ] +
∑
ℓ

γℓ

(
LℓρL

†
ℓ −

1
2{L

†
ℓLℓ, ρ}

)
,

where the Lℓ’s are called jump operators; this defines an evolution of density matrices given by

dρ(t)

dt
= L(ρ(t)) .

Throughout, we let H be the Ising Hamiltonian

HIsing = −J
∑
i∈Λ

ZiZi+1 − h
∑
i∈Λ

Zi,

with indices defined modulo n, and the uniform on-site dephasing Lindbladian with jump operators Ldeph
i = Zi at rate γ > 0:

Ddeph(ρ) = γ
∑
i∈Λ

(
ZiρZi − ρ

)
.

For any Pauli string P =
⊗n

i=1 σi with σi ∈ {I,X, Y, Z}, let

kXY (P ) :=
∣∣{i : σi ∈ {X,Y }}

∣∣
which we call the coherence order of P . We will also use single-spin flip operators σ±

i = 1
2 (Xi± iYi) and the local neighbor projectors

P
(↑↑)
i−1,i+1 = 1

4 (I + Zi−1)(I + Zi+1), P
(↑↓)
i−1,i+1 = 1

4 (I + Zi−1)(I − Zi+1), etc.

There are four such projectors; together they resolve the identity on sites i± 1.

Primer. Stationary state for a Lindbladian: ρ⋆ is stationary if L(ρ⋆) = 0.
Classical continuous-time Markov chain: On a finite state space Ω, a generator Q = (Qx,y)x,y∈Ω has Qx,y ⩾ 0 for x ̸= y and rows
summing to zero: Qx,x = −

∑
y ̸=x Qx,y. Probabilities evolve by the master equation ṗt = ptQ. A distribution π is stationary if

πQ = 0. Detailed balance with respect to π means πxQx,y = πyQy,x; this implies πQ = 0. The spectral gap of Q is the smallest
nonzero value of −Reλ over λ ∈ spec(Q); it governs exponential mixing to π.

2.A. (8 pts.) Warm-up: spectrum of translation-invariant dephasing. Consider L0 := Ddeph with H = 0.

(i) Show that every Pauli string P is an eigenoperator of L0 and compute its eigenvalue

L0(P ) = −2γ kXY (P )P.

Here kXY (P ) is the number of sites where P contains X or Y . Letting ρ(0) =
∑

P cP (0)P , solve dρ(t)
dt = L0(ρ(t)) for the

cP (t)’s and comment on their decay properties.
(ii) Compute the multiplicity of the eigenvalue −2γk of L0.

Hint: count Pauli strings with exactly k letters in {X,Y }.
2.B. (8 pts.) Commuting Hamiltonians + dephasing: many steady states. Let Lcomm := −i[HIsing, ·] +Ddeph.

(i) Show that the subspace DiagZ := {ρ : ρ is diagonal in the common eigenbasis of all Zi} is invariant under Lcomm, and
that Lcomm acts as zero on DiagZ .

(ii) Conclude that every classical probability distribution over spin configurations (embedded as a diagonal density matrix in the
Z basis) is a stationary state, and compute the dimension of the fixed point space (as a vector space; and as physical states
with trace one).

(iii) Argue that all non-diagonal Pauli strings decay at least at rate 2γ, i.e. the nonzero part of the spectrum of Lcomm lies in
{λ : Reλ ⩽ −2γ }.
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2.C. (10 pts.) A local Gibbs sampler for the Ising chain. We now add local, neighbor-conditioned spin-flip jumps. For each site
i and each neighbor configuration s ∈ {↑↑, ↑↓, ↓↑, ↓↓}, set

L↑
i,s =

√
r↑s P

(s)
i−1,i+1 σ

+
i , L↓

i,s =

√
r↓s P

(s)
i−1,i+1 σ

−
i ,

and define

Lβ(ρ) := −i[HIsing, ρ] +Ddeph(ρ) +
∑
i,s

(
L↑
i,s ρL

↑†
i,s − 1

2{L
↑†
i,sL

↑
i,s, ρ}

)
+

∑
i,s

(
L↓
i,s ρL

↓†
i,s − 1

2{L
↓†
i,sL

↓
i,s, ρ}

)
.

Let S(s) ∈ {−2, 0,+2} denote the sum of neighbor spins in configuration s (eigenvalues ±1 of Z). Flipping i from ↓ to ↑ when
neighbors are s changes the evaluation of the Hamiltonian by

HIsing(↑; s)−HIsing(↓; s) = −2
(
h+ J S(s)

)
.

We fix explicit “heat-bath” rates

r↑s = κ
eβ(h+JS(s))

2 cosh
(
β(h+ JS(s))

) , r↓s = κ
e−β(h+JS(s))

2 cosh
(
β(h+ JS(s))

) , (1)

for some κ > 0 (overall time scale). We see that the rates (1) obey the local detailed balance condition

r↑s

r↓s
= e−β (HIsing(↑;s)−HIsing(↓;s)) = e 2β (h+J S(s)).

(i) Restriction to diagonal probabilities. Let ρt =
∑

z∈{↑,↓}n pt(z) |z⟩⟨z| be diagonal. Show directly from the definition of
Lβ that the diagonal entries evolve as

d

dt
pt(z) =

n∑
i=1

(
pt(z

(i↓)) r↑
si(z(i↓))

+ pt(z
(i↑)) r↓

si(z(i↑))
− pt(z)

(
r↑si(z) 1zi=↓ + r↓si(z) 1zi=↑

))
,

where z(i↑) (respectively z(i↓)) is z with spin i set to ↑ (respectively ↓), and si(·) reads the neighbors of i. Conclude that
the restriction of Lβ to DiagZ is a classical continuous-time Markov chain with generator Q whose nonzero off-diagonal
entries flip a single spin with the rates in (1).

(ii) Stationarity of the Gibbs distribution. Let πβ(z) ∝ e−βHIsing(z). Using (i) and the definition of Q, show that for
configurations x, y that differ by one spin flip,

πβ(x)Qx,y = πβ(y)Qy,x.

This detailed balance identity implies πβQ = 0. Conclude that the Gibbs state ρβ = e−βHIsing

tr(e−βHIsing )
is stationary for Lβ ,

namely Lβ(ρβ) = 0.

2.D. (8 pts.) Decomposition and the mixing/spectral gap. Let gap(M) denote the spectral gap of a generator M, i.e., the
smallest nonzero value of −Reλ over λ ∈ spec(M).
(i) Show that DiagZ and its Hilbert–Schmidt orthogonal complement OffZ are invariant subspaces of Lβ .
(ii) Prove that the spectrum of Lβ contains the spectrum of the classical generator Q (acting on DiagZ).
(iii) Show that all eigenvalues of Lβ on OffZ satisfy Reλ ⩽ −2γ. Hint: The Hamiltonian commutator is anti-Hermitian (purely

imaginary); dephasing contributes ⩽ −2γ to real parts; the extra dissipators are contractive.
(iv) Conclude that gap(Lβ) = min

{
2γ, gap(Q)

}
.

2.E. (6 pts.) Single-site check: Heisenberg equation for Z. Consider a single qubit with H = 0 and jump operators L↑ =√
γ↑ σ

+, L↓ =
√
γ↓ σ

−. Work in the Heisenberg picture, where the dual generator acts as

L∗(O) =
∑

α∈{↑,↓}

γα

(
Lα†OLα − 1

2{L
α†Lα, O}

)
.

Show that

L∗(Z) = −(γ↑ + γ↓)Z + (γ↑ − γ↓) I,

and deduce the ODE

d

dt
⟨Z⟩t = −(γ↑ + γ↓)⟨Z⟩t + (γ↑ − γ↓)

with fixed point ⟨Z⟩∞ =
γ↑−γ↓
γ↑+γ↓

. (If you choose γ↑/γ↓ = e2βh , verify that ⟨Z⟩∞ = tanh(βh), consistent with a one-site Gibbs
state.)
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Solution:
2.A.

2.B.

2.C.

2.D.

2.E.
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